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Nutrients are critical to the functioning of the human body and their imbalance can result in detrimental health concerns. The
majority of nutritional literature focuses on macronutrients, often ignoring the more critical nuances of micronutrient balance,
which require more precise regulation. Currently, micronutrient status is routinely assessed via complex methods that are
arduous for both the patient and the clinician. To address the global burden of micronutrient imbalance, innovations in
assessment must be accessible and noninvasive. In support of this task, this article synthesizes useful background information
on micronutrients themselves, reviews the state of biofluid and physiological analyses for their assessment, and presents
actionable opportunities to push the field forward. By taking a unique, clinical perspective that is absent from technological
research on the topic, we find that the state of the art suffers from limited clinical relevance, a lack of overlap between biofluid
and physiological approaches, and highly invasive and inaccessible solutions. We present opportunities for future work to
maximize the impact of a novel assessment method by incorporating clinical relevance, the holistic nature of micronutrition,
and prioritizing accessible and noninvasive systems.

CCS Concepts: • Applied computing → Health informatics; Health care information systems; Consumer health; •
General and reference → Surveys and overviews; • Human-centered computing → Ubiquitous and mobile devices.

Additional Key Words and Phrases: health sensing, mobile health, precision nutrition, micronutrients, nutrition assessment,
malnutrition, point-of-care devices, accessibility

1 INTRODUCTION
Balanced nutrition is important for the development and functioning of the human body and can have many
downstream health effects. The World Health Organization (WHO, Table 12) reports that individuals with proper
nutrition have increased lifespans, are more likely to break cycles of poverty, and have lower risks of disease,
which impacts productivity and mortality [139]. Malnutrition is the most critical issue related to nutritional intake,
with undernutrition associated with about 45% of deaths in children younger than five years old. Anemia is a major
resulting disease, affecting 37% of pregnant people and 40% of children under 5. The WHO defines malnutrition
as nutrient imbalance, which consists of deficiencies or excesses in essential nutrients [206]. It is a condition
that includes several interconnected factors: 1) being overweight, 2) obesity, 3) diet-related noncommunicable
diseases like anemia, heart disease, and diabetes, and 4) undernutrition, which encompasses being underweight,
wasting, and stunting, as well as a lack of essential micronutrients. Micronutrients are the vitamins (e.g. vitamins
A, C, B12) and minerals (e.g. iron, calcium, iodine) which are critical to everyday human bodily function and can
only be provided via dietary intake (i.e. they are not produced by the body).
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According to Hummell and Cummings [73], malnutrition can be caused by insufficient intake, malabsorption,
acute and chronic diseases, increased nutrient need, and weight loss surgery. The impact of acute or chronic
diseases and weight loss surgery is self-explanatory, whereas other factors are less visible. Insufficient intake
in particular can be influenced by a wide range of variables, making it a challenging problem. These factors
include income, access to nutritious foods, culture, and upbringing (malnutrition patterns can be passed down to
generations). Insufficient intake is a particularly high risk for low-income families. Furthermore, there is often a
lack of awareness about insufficient intake, making behavior change more difficult. Malabsorption can also be
a cause, as the absorption of nutrients found in food and supplements is highly individual and can be affected
by diseases, genetic issues, and one’s stage of life. In addition, individual nutrient requirements change over
time, and several factors can increase nutrient demand, such as growth from infancy to adulthood, pregnancy,
lactation, and recovery from illness or other trauma.

Nutrients can be classified into two main categories: macronutrients and micronutrients. Both are essential
in precise balance to prevent malnutrition, also referred to as nutritional imbalance. Macronutrients include
carbohydrates, fats, and proteins, which are major energy sources and are required in larger amounts than
micronutrients [67]. Although required in smaller amounts, optimal intake of micronutrients is crucial. Micronu-
trients include vitamins and minerals, and they play a critical role in chemical reactions that produce energy
from macronutrients acquired from food, as well as other essential bodily functions [140]. Micronutrient intake
through diet or supplements is crucial because our bodies cannot synthesize micronutrients, nor can they be
substituted for one another [21]. A precise intake amount is required and slight deviations can result in either
deficiency or excess, both with significant health impacts [67]. For these reasons, micronutrient imbalance is a
problem that is unique and deserving of attention.

Micronutrient Deficiency. The estimated number of people with micronutrient deficiency is 2 billion worldwide
[196]. It is estimated that micronutrient deficiencies are the cause of between 425,000 and 745,000 deaths in
children under five years old [22]. An estimated 56% of preschool-aged children and 69% of non-pregnant
females of reproductive age worldwide suffer from at least one micronutrient deficiency [179]. Globally, the most
widespread micronutrient deficiencies occur in iron, iodine, folate, vitamin A, and zinc [11]. The population of
the United States (US) has significant risk of micronutrient deficiency due to the prevalence of a high-energy,
low-nutrient diet [41, 49]. The US’ National Health and Nutrition Examination Survey (NHANES) estimates that
31% of the US population is at risk for micronutrient deficiency, with calcium, potassium, iron, and vitamins A,
D, C, and E being of particular concern [41, 49]. Since NHANES is a survey of self-reported dietary intake with
minimal biochemical testing, it is likely that this number is actually underestimating the true burden in the US
[41].

Deficiencies can cause developmental issues, metabolic disorders, impaired immune system, altered endocrine
and cognitive functioning, chronic disease, and more. For example, high magnesium intake and circulating status
(via urine) is directly associated with a greater risk of cardiovascular disease (CVD) [156]. While developed coun-
tries are certainly at a risk for micronutrient deficiencies, those most at risk are people living in underdeveloped
countries. Populations that also bear a significant burden include developing countries as well as children less than
five years old, pregnant people, and victims of chronic disease [23, 41, 140, 179]. Risks of inadequate intake are
exacerbated since different micronutrients are needed in different amounts at different stages in life [21]. Vitamin
A, iron, and zinc are among the most significant micronutrient deficiencies observed in children [179]. In the first
1000 days of life, iron, iodine, folate, and vitamin D have high dietary requirements, and a failure to meet them
could result in poor physical and cognitive development. During adolescence, iron, calcium, folate, and vitamin D
intake is critical, especially for those who menstruate. Pregnancy sees an increase in iron, folate, vitamin B12,
and vitamin D requirements. The elderly are more at risk for vitamin D, B12, and B6 deficiency, and medications
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that influence micronutrient status or absorption must be heavily considered during this stage. Micronutrient
deficiencies rarely manifest alone, and it is common to see multiple deficiencies arise simultaneously [11].

Micronutrient Excess. Like deficiency, micronutrient excess can also lead to health detriments, with the risk
increasing as intake levels surpass an individual’s upper limit [56]. Toxicity from micronutrient excess can
occur in any person who exceeds this limit. However, there is an exceptional risk for vulnerable populations,
namely infants, young children, and pregnant people [45, 56, 76, 147]. For example, an excess of iron increases
the risk of diarrhea, sepsis, meningitis, and gut inflammation for infants and young children, with a lethal dose
of 150 mg/kg [147]. Similarly, surplus iron can lead to an increased risk of gestational and type 2 diabetes for
pregnant people [147]. Elevated health risks are also a concern with an excess of vitamin D in infants, calcium
in pregnant people, vitamin A in infants, young children, and pregnant people, and iodine in all three of these
groups in addition to breastfeeding parents [45, 147]. Individuals who are more likely to be taking supplements
(especially multivitamins) to address an initial deficit could also be at a greater risk for micronutrient toxicity
[24, 56]. Research suggests that ingesting an excess of micronutrients through diet alone is unlikely and may
only occur for those who take supplements [24, 45, 147]. An excess of certain micronutrients can interfere with
the absorption of others, potentially leading to secondary deficiencies. For instance, elevated calcium levels
may reduce the absorption of magnesium. Additional information on micronutrient interactions are provided in
Tables 13, 14, and 15. There is minimal research on micronutrient excess because it is usually limited to the above
population groups. As a result, the work covered in this review largely focuses on micronutrient deficiency. For
more information on excessive micronutrient intake and its specific effects for each micronutrient, we recommend
referring to an up-to-date nutrition overview (e.g. Espinosa-Salas and Gonzalez-Arias [45]).

Micronutrition Assessment. When a micronutrient imbalance is identified, it is addressed through intervention.
This involves modifying diet, providing micronutrient supplements, or on a population scale, fortifying food
products such as iodized salt and fortified flour [11]. Interventions need to be carefully planned and monitored to
avoid providing too little or too much of a particular micronutrient. There is a strong need for tools that can help
guide intervention programs to effectively reach at-risk populations while minimizing the impact on those who
have sufficient nutrient levels. This requires employing “different risk assessment methods to make the monitoring
process more efficient, reliable, and cost-effective” [11]. Nutritional status assessment is a way to evaluate an
individual’s overall nutritional health and is necessary to identify, prevent, and address any imbalances. This
review focuses on micronutrient status assessment methods in particular because we find that existing methods
are insufficient and new techniques are under-researched.

We propose that an ideal assessment method is both accessible and noninvasive. An accessible method is one
that is available to more individuals, while maintaining clinical effectiveness. This can be achieved through
improvements in cost, efficiency, or mobility. Such a method should ultimately alleviate the need for laboratory
tests, decrease reliance on high-effort and subjective surveys (such as dietary intake logging), and increase
efficiency and accuracy for clinicians. A noninvasive method would either eliminate the need for a biofluid
sample or obtain it in an unobtrusive manner. Noninvasiveness is therefore interconnected with accessibility, as
a method that is invasive (e.g. requiring a blood draw) is less accessible (e.g. places burden on the patient and
on the clinician). An ideal method that is both accessible and noninvasive could obtain micronutrient status
regularly, without much effort for the patient or clinician. To maintain effective and clinically-relevant assessment
methods, it is also essential to balance the accessibility and noninvasiveness of a method with its ability to be a
sensitive (high true positive rate) and specific (high true negative rate) assessment of micronutrient status. Because
every country in the world is impacted by malnutrition [206], it is clear that an accessible and noninvasive
assessment method is needed to enable routine assessment globally. This is especially true in countries with
high-fat, low-nutrient diets such as the US, in low- and middle-income nations, and in areas of the world where
complex, blood-based analyses are generally infeasible. In our review, we aim to consider both clinical and
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technical aspects of micronutrition assessment and explore the potential for novel, accessible, and noninvasive
methods. We argue that such an interdisciplinary approach is key to finding optimal solutions.

In the subsequent sections, we discuss biofluid and physiological analysis methods for micronutrient status
assessment. Within the context of this paper, biofluid analysis refers to techniques that measure the amount
of a micronutrient biomarker present in a biofluid as a means to infer the underlying nutritional status of an
individual, whereas physiological analysis focuses on the bodily signs and signals which are symptomatic a
micronutritional imbalance. For the latter, we focus on providing a brief overview of clinical physical assessment
in nutrition and describe relevant applications of optical sensing.

1.1 Paper Scope
Few existing papers that review novel micronutrient assessment methods are comprehensive and clinically
relevant [26, 72, 83, 135, 171, 189]. Campuzano et al. [26] and Kalita et al. [83] focus particularly on electrochemical
sensors, with the latter considering few vitamins and mostly out-of-body status. Huey et al. [72] focus on vitamin
A assessment and emphasizes the limitations of relying on centralized laboratories and specialized equipment,
underscoring the need for more portable and accessible diagnostic methods. Nimbkar et al. [135] focus on
microfluidic assessment and Shi et al. [171] concentrate specifically on wearable sensors. Udhani et al. [189]
provide a detailed review on biomarker-based micronutrient detection, focusing on the analytical chemistry
aspect.

The novelty of our paper lies in its comprehensive review of accessible and noninvasive micronutrient assess-
ment methods, uniquely emphasizing clinical relevance—an aspect often overlooked in prior work. It includes a
background on micronutrients, tailored for a non-clinical perspective. We also explore a wide range of techniques
for assessing biofluids and physiology, including assay-based technologies, electrochemistry-based methods,
spectroscopy-based approaches, and analytic methods utilizing machine learning (ML). This review offers a
high-level summary, with detailed methods available in dedicated sources. We contribute several relevant tables
throughout the paper and provide a comprehensive reference about micronutrients and their assessment in the
Appendix. Ultimately, this review calls for actionable potential opportunities to advance these methods.

This review consists mostly of methods that are both accessible and noninvasive, or at least one of these. We
additionally include few methods that are neither accessible nor noninvasive, yet are interesting and valuable
for future work within this scope. This review does not include methods for assessing micronutrient levels in
entities outside of humans, such as food or pharmaceuticals. We note that while hair and nail samples can be
valid subjects of micronutrient analysis, we focus on biofluids in our review of assessment techniques since
nutritional analyses of hair and nails measure the metabolism of a nutrient in cells rather than the in-body status
of the nutrient [14, 62]. Our focus is on vitamins and trace minerals (micronutrients), thus we do not discuss
nutrients such as proteins, fats, and carbohydrates (macronutrients) or major minerals (e.g. potassium, calcium,
etc.). These are sometimes considered separate from micronutrients because of their higher intake requirements
and larger quantities within the body. Lastly, this review does not include alternative medicine techniques or
methods, as this is out of the scope.

This review is structured as follows. We first present background information in Section 2. Next, we discuss
micronutrient status assessment methods based on biofluid analysis in Section 3, and briefly touch on physiology-
based methods in Section 4, focusing on optical sensing techniques. We summarize the current gaps in the
literature and present suggestions for future work in Section 5. Finally, we end with a conclusion in Section 6,
followed by reference tables in the Appendix (A).
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2 BACKGROUND
In this section we describe micronutrient characteristics, their presence in biofluids, and their impacts on
physiological functioning. Such a background is necessary to contextualize solutions to emerging micronutrient
status assessment methods because of the variety of possible approaches. In-body assessment methods refer
to the levels of a micronutrient present within the body, reflecting the current internal state of an individual’s
micronutrition. On the other hand, out-of-body assessment methods involve external indicators used to infer
internal status, such as physiological symptoms measurable through wearable sensors or physical exams. We
focus on both approaches, as each provides relevant insights into micronutrient status and offers the potential
for non-invasive and accessible assessment methods.

2.1 Micronutrient Characteristics
Micronutrients are divided into three categories: water-soluble vitamins, fat-soluble vitamins, and minerals [25].
Water-soluble vitamins, such as vitamin C and the B vitamins, are absorbed directly into the bloodstream and
are quickly excreted in urine. They are not stored for long periods in the body, so regular intake is necessary to
prevent deficiencies, and there is less concern about toxicity from excess intake. On the other hand, fat-soluble
vitamins like A, D, E, and K are absorbed into lymph vessels along with dietary fats. Fat-soluble vitamins are
stored in larger quantities in fatty tissues and the liver, so deficiencies take longer to develop, and daily intake is
less critical. However, due to their efficient storage and the lack of a rapid excretion mechanism, toxicity is more
of a concern.

Minerals can be categorized as major or trace minerals based on the daily requirement [25]. Major minerals,
such as sodium, potassium, chloride, phosphorus, and magnesium, are required in amounts greater than 100
mg per day, while trace minerals like iron, copper, zinc, selenium, iodine, chromium, fluoride, and manganese
are needed in amounts of 100 mg or less per day. Minerals are water-soluble and are absorbed directly into the
bloodstream, sometimes with the help of transport proteins. It is important to note that minerals have an electric
charge, and their function and storage can be influenced by various factors. For example, certain minerals carry a
positive charge, such as sodium (Na+) and potassium (K+), while others are negatively charged, like chloride (Cl-).
Their electric charge plays a crucial role in mineral homeostasis, influencing absorption efficiency, competition for
transport and storage, bioavailability, and electrolyte balance. For a more in-depth discussion of these interactions,
we refer the reader to [174, 194]. A comprehensive summary of the characteristics of micronutrients is presented
in the Appendix in Tables 13, 14, and 15.

Dietary guidelines for intake vary across organizations and countries, and are based on factors such as age
and sex. These guidelines are not standardized due to the individualized nature of micronutrient metabolism,
the diversity of micronutrients, their interactions, and the specific values at which they are needed. The US, for
example, utilizes dietary reference intervals such as the Recommended Dietary Allowance (RDA) [134]. The RDA
represents the average daily level of intake sufficient to meet the nutrient requirements of 97-98% of healthy
individuals. The US National Institutes of Health (NIH) also defines terms to describe intake levels, such as
an Upper Limit (UL), highlighting the potential for excess intake. In cases where there is insufficient evidence
to establish these guidelines, there exists the more general term, Adequate Intake, which establishes a lower
bound of nutritional intake necessary to meet a healthy nutritional state within a population [75]. For example,
Adequate Intake for the nutrient biotin (vitamin B7) in human milk-fed infants is defined by the biotin content of
human milk itself, because there is a lack of data available to scientifically determine an RDA for this population.
Adequate Intake further emphasizes the uncertainty surrounding the appropriate levels of micronutrients in diet.

Micronutrient status assessment usually relies on the combination of the analysis of micronutrient biomarkers
in biofluids as well as the physiological symptoms presented by an imbalance. Micronutrient biomarkers (predom-
inantly measured by laboratory analyses of biofluids) are still debated, but can generally serve as a reliable optimal
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reference standard for assessment methods [42]. An optimal reference standard is the clinically agreed-upon
technique for determining a patient’s in-body status of a micronutrient (e.g. vitamin B9), and describes the target
biomarker (e.g. folate), biofluid matrix to be analyzed (e.g. blood serum), and analysis method (e.g. LC-MS/MS) to
use for accurate assessment.These standards are continuously debated by the clinical community, and are typically
defined by current knowledge of “the chemistry, absorption, distribution in the body, and metabolism” of a
nutrient [42]. Because these dynamics can be highly individualized, validating a standard requires well-controlled
studies that involve specific dietary interventions and the subsequent evaluation of the standard’s “specificity,
sensitivity, and suitability for various population subgroups” [42].

Certain micronutrient imbalances are associated with observable physical or physiological symptoms, such as
those in the skin, eyes, autonomic functioning, etc., which may present opportunities for developing noninvasive
assessment methods tailored to specific nutrient deficiencies [37, 44, 73, 119, 152]. These symptoms provide
noninvasive insights into the bodily storage ofmicronutrients, internal processes, and can help identify appropriate
biomarkers for further testing. Section 2.3 discusses micronutrient effects on physiological processes in more
depth. It should be noted that some physical symptoms of micronutrient imbalances only arise when the imbalance
becomes quite severe. This can happen slowly, in some cases over the course of several months (i.e. iron), and
can result in irreversible symptoms (e.g. night blindness as a result of severe vitamin A deficiency; Tables 13 -
15). While physical symptoms still provide critical insights into the overall burden of micronutrient imbalance
in a community, sole reliance on them for assessment can complicate preventative treatment. Quantitative,
biofluid-based assessments for biomarkers are not immune to similar issues faced by physiological assessments
(e.g. status of the biomarker plasma retinol decreases only after vitamin A stores in liver and eyes have nearly
depleted), emphasizing the importance of considering both physiological and biofluid-based assessments in the
practice of clinical nutrition.

2.2 Micronutrients in Biofluids
Biofluid analysis for micronutrient status remains challenging since it is often unclear how other biofluids reflect
the optimal reference standard matrix for that micronutrient. Some biofluids include blood, saliva, sweat, tears,
urine. Besides blood, each of these can be collected and analyzed noninvasively. Blood and urine are clinically
relevant for representing in-body micronutrient status, as will be demonstrated in Section 3.1. However, evidence
is less clear for saliva, sweat, and tears [74]. Although it will not be covered in depth, it is also worth mentioning
human milk as a potential biofluid. Breast milk may have implications on the developmental outcomes of infants
whose primary source of nutrition is human milk, but this is actively debated [109]. As mentioned earlier, iodine
excess in breastfeeding parents can also express itself in human milk, placing infants at an increased risk [147].

In the clinical literature, the equivalence of saliva, sweat, and tears to blood and urine in micronutrient status
assessment remains ambiguous. Some evidence for correlation of micronutrient levels in saliva with blood
levels was found on a by-micronutrient basis [74]. For example, serum and saliva levels of vitamin D were
found to have a correlation of 0.56, measured using a total vitamin D (25-hydroxy vitamin D) kit with the
electrochemiluminescence technique [10]. Additionally, some correlation of iron levels in saliva and serum (a
blood derivative) have been found. However, validity remains inconclusive as some sources have found a high
positive correlation between salivary and serum levels [27, 61], while others report a high negative correlation
[9, 48, 53]. The techniques used to study this correlation involve enzyme-linked immunosorbent assays (ELISAs),
laboratory assays, spectrophotometry, and chemiluminescence methods.

Additional research aims to quantify micronutrient status with saliva as well as tears [159, 164]. The three
types of human tears, basal, reflex, and emotional, differ in their chemical composition, which can influence
which type is most appropriate to collect for specific analyses [106]. Sempionatto et al. [164] in particular argue
that tears are a good biofluid for analysis since they are noninvasive, less complex than blood yet still contain a
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“variety of biomarkers”, and they “reflect concurrent blood levels” because of passive leakage of compounds from
blood plasma. It is important to note, however, that neither of these works ([159, 164]) provide comparisons to
the in-body status of their target micronutrients as measured by optimal reference standard, urine or blood-based
assays. Additionally, it is important to consider the potential ethical implications of tear inducement and collection.
One study used Schirmer strips, a common method for collecting tears in healthcare settings, and found that
most participants considered the process acceptable [151]. Specifically, 70% did not mind the procedure, and 74%
preferred tear collection over venous blood sampling or other forms of biofluid collection such as urine.

Sweat receives significant attention in emerging micronutrient detection methods, especially in wearables. The
composition of collected sweat varies depending on whether it is produced actively (through exercise or heat
exposure) or passively (through methods that encourage sweat production without physical activity, such as
sweat patches or chemical stimulation) [95]. Active sweating in particular usually produces higher concentrations
of sodium, chloride, and metabolites. Eccrine sweat is a clear, odorless fluid secreted by eccrine sweat glands,
which are essential for thermoregulation [70]. It is the primary sweat type used for micronutrient analysis, as
apocrine sweat—the other major type—is thicker and predominantly composed of lipids and proteins, making it
less suitable for this purpose [66]. Therefore, when we discuss sweat, we refer to eccrine sweat, which is mostly
sodium and chloride, with smaller amounts of micronutrients and metabolites (at the micro and nanomolar
scale), similar to or smaller than their concentrations in blood plasma [13]. Micronutrients found in sweat include
potassium, calcium, magnesium, iron, copper, zinc, vitamin C, and vitamin B1. Out of the compounds in sweat,
mostly sodium and chlorine ions are well-studied. Some research has explored water-soluble vitamins in sweat,
such as vitamin C and vitamin B1, but there is no such attention on fat-soluble vitamins. Many confounding
factors can impact sweat composition, such as the contamination of sweat by skin-derived substances, notably
iron [13]. This is combated by pre-rinsed skin, removal of initial sweat (concentrations stabilize after 20 to 30
minutes of sweating), and the analysis of cell-free sweat. The region and method of collection can also have
an impact, as many micronutrient concentrations can vary two to four times depending on the region. Finally,
sweat can be reabsorbed into the body. Skin temperature and the flow rate of sweat both impact the rate of this
reabsorption.

The clinical literature notes a general “lack of association between dietary micronutrient intake and corre-
sponding sweat micronutrient concentrations” [13]. This lack of an association exists in comparison to blood as
well. A review by Baker and Wolfe [13] finds that there is no established correlation between sweat and blood
composition, and there is “little support for using sweat as a surrogate for blood”. Concentrations of minerals in
sweat are much more varied than in plasma, likely because minerals bind to carrier proteins in blood. The review
also reports little to no correlation between sweat and blood concentrations of vitamin C and iron status. This
finding for iron is echoed in another paper that found both iron and calcium have no correlation between sweat
and blood concentrations [12]. However, it was reported in the same paper that iron concentrations in sweat
have been observed to be lower in anemic patients and higher in patients undergoing iron therapy.

Finally, it is important to consider the potential impact of time lag variability in biomarker expression across
different body fluids. This variability arises from nutrient kinetics and bioaccessibility, particularly in relation to
absorption, distribution, metabolism, and excretion (ADME) within the human body [59, 122]. However, studies
described in this section do not explicitly account for these temporal effects, which are crucial for accurately
correlating blood biomarkers with those present in other biofluids. At present, the temporal dynamics governing
these relationships remain insufficiently understood, and require further investigation.

2.3 Micronutrient Effects on Physiological Processes
Most of the physiological effects of micronutrients are related to the autonomic functions of the body. Autonomic
functioning refers to bodily functions controlled by the autonomic nervous system, which regulates involuntary
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processes and rhythms such as breathing, heart rate, and digestion [202].The specific importance of micronutrients
to the proper functioning of the nervous system has been documented by several papers [16, 31, 54]. For example,
a study of vitamin B12 deficiency compared responses to a 60-degree passive head up tilt test between a control
group, a vitamin B12 deficient group, and a group with diabetes mellitus [16]. They found that the deficient
group had comparable autonomic neuropathy to the diabetic group. Our exploration of observable impacts of
deficiencies on autonomic functioning found three main affected areas relating to biofluid composition and
physiological effects: general symptoms, cardiac function, and sleep.

2.3.1 General Symptoms. Deficiencies can be classified as either clinical or subclinical based on their severity
[184]. Most deficiencies result in symptoms of general fatigue, lethargy, irritability, muscle pain, weakness, and
headaches. Clinical deficiencies often have more distinguishable symptoms, while subclinical deficiencies are
limited to the above non-specific ones. Deficiencies of vitamin C, B vitamins, iron, magnesium, and zinc have
been linked to fatigue more so than others [8, 184]. While energy and fatigue are more subjective and can can rely
on subject-reporting, there are some established and validated assessment methods such as the Multidimensional
Fatigue Inventory [173] and the SF-36 Vitality Scale [200]. A comprehensive reference for physiological symptoms
associated with deficiency is lacking in literature, so we provide one in Tables 16, 17, and 18 within the Appendix.

2.3.2 Cardiac Function. One main aspect of autonomic functioning affected by nutrient imbalance is cardiac
functioning. Several studies explore the interaction between heart rate variability (HRV) and micronutrient
deficiencies. Components of HRV are associated with parasympathetic (PNS) and sympathetic nervous system
(SNS) activity [168]. High-frequency (HF) bands reflect PNS activity and correspond to the respiratory cycle,
while low-frequency (LF) bands reflect PNS, SNS, and baroreceptor activity. Vitamin B12 deficiency is one of the
most documented in terms of impact to HRV, with evidence that it lowers HRV overall, impacting sympathetic
indices the most [7, 16, 111, 183]. Supplementation of B12 was also demonstrated to return HRV indices to a
comparably normal state [7]. Deficiency of vitamin D was found to lower HRV as well [111]. Calcidiol (25(OH)D)
levels, a form of vitamin D, was shown to be associated with the ratio of LF to HF HRV power [118]. This metric
is sometimes called sympathovagal balance, and is intended to be a measure of ’balance’ between SNS and PNS
activity, but there has been debate over this interpretation [168]. Iron-deficiency anemia (IDA), an advanced form
of iron deficiency, has more conflicting evidence of HRV impacts, with some studies finding no difference in HRV
indices versus the control [188] while others were able to find a difference in the IDA group [80, 209].

Impacts of micronutrients on blood pressure have also been studied [16, 31, 185]. The supplementation of
potassium, magnesium, zinc, vitamins C, D, B6, and a decreased intake of sodium and selenium can “positively
modulate blood pressure levels” [31]. The aforementioned study involving responses to a head up tilt test in
vitamin B12 deficient people found a drop in systolic blood pressure 60 beats after the test [16]. This finding
aligns with previous work suggesting that a dip in blood pressure when standing up from sitting or lying down is
a symptom of vitamin B12 deficiency [185].

As an aside, pulse-oximiters, smartwatches, and other health sensors or even smartphones can readily measure
continuous cardiac function through photoplethysmography (PPG). Pulse rate (PR), HRV, and blood pressure can
be derived from PPG [107, 126].

2.3.3 Sleep. Another area of research is the role of micronutrient status in sleep. Sleep duration is associated
positively with iron, zinc, and magnesium and negatively with copper, potassium, vitamin A and vitamin B12
levels [19, 79]. Sleep quality increases with zinc, magnesium, and vitamin B9 status and is negatively associated
with vitamin B12 status [19, 30, 77]. There are conflicting findings for iron. One study reports that iron status is
not proven to be correlated with sleep quality [78], while another claims that supplementation had positive effects
on sleep disorders [105]. Sleep deprivation is also connected to micronutrition through its influence on hormones
that regulate stress and the immune system. Sleep deprivation can decrease levels of cortisol while increasing
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ghrelin, a hormone linked to hunger [90]. This shift can lead to increased hunger, and a continuous lack of sleep
was even found to have a positive correlation with obesity (which is interconnected with malnutrition [206]).
Studies also found that after temporary sleep deprivation there were decreased magnesium levels measured via
red blood cell testing and reduced zinc levels in plasma tests [112].

3 BIOFLUID ANALYSIS METHODS FOR MICRONUTRIENT STATUS ASSESSMENT
This section describes how biofluid analysis has been leveraged to assess micronutrient status. These assess-
ment methods target particular biomarkers within a biofluid that are indicators of micronutrient status. Reliable
biomarkers are a research challenge themselves (which AI techniques may address [34]), but clinical literature sug-
gests that micronutrient biomarkers are more established and specific than macronutrient biomarkers [42]. Most
micronutrients have one or two specific biomarkers associated with their circulating status that are considered to
be the optimal reference standard for status assessment (Table 1). Although some optimal reference standards are
still debated, their existence makes the evaluation of novel assessment methods more straightforward.

In this section we will discuss clinical biochemical analysis, followed by other innovative technologies. When
reviewing the non-clinical methods (Sections 3.2 to 3.5), we particularly note what each approach claims to
assess, the method by which they conduct this assessment, how their method was evaluated, and the clinical
relevance of their implementation. Critical to accessibility is each method’s platform. Point-of-care (PoC) devices
are compact and portable enough to be deployed for use where needed, as opposed to traditional ‘benchtop’
technologies that are restricted to a laboratory setting. The term PoC is widely applicable, so we label methods
more specifically to compare the advantages and disadvantages of each, while still acknowledging that they are
considered PoC. Specifically, the terms ‘portable’, ‘smartphone-based’, and ‘wearable’ all imply PoC devices but
also suggest varying levels of accessibility and ubiquity.

We further expand on clinical relevance by noting that this includes the target biomarker, the assessment
method, and the concentrations of that biomarker that are evaluated. A clinically relevant method should closely
align with the optimal reference standard on these factors (Table 1). To aid future work that may wish to integrate
or innovate on a particular method, we explicitly mention when a study does not demonstrate this agreement
(e.g. assessing RBP for vitamin A status) and/or what assessment methods were used during evaluation (e.g.
ELISA). For micronutrients with rapid turnover (i.e. water-soluble vitamins) or without risks of excess, a lack of
sensitivity in the upper spectrum of the clinically relevant concentrations (Table 1) are not a major limitation for
methods which primarily aim to identify deficiency. Regardless, such a limitation is still noted for completeness.
Last, we provide tables that group together similar works and summarize the pertinent details and quantitative
results of their evaluation, if available. For conciseness, this information is omitted from the body of the text, and
we encourage readers to instead refer to the relevant tables.

3.1 Clinical Biochemical Analysis
Clinical biochemical analysis involves laboratory testing of biomarkers found in urine, blood, or other biosamples
[154]. Results can be influenced by several factors and need to be interpreted in the context of other aspects of the
patient’s health. Additionally, biochemical testing is often time- and resource-intensive. Despite this, biochemical
analysis describes clinical optimal reference standard methods for quantifying the circulating micronutrient
status in the body [74, 210]. These methods can be roughly separated into various types of assays, and liquid
chromatography (LC)-coupled spectroscopy.

One type of assay which is popular for clinical micronutrient assessment is a microbiological inhibition assay.
These assays work on the principle that specific micronutrients are needed for the growth of certain bacteria, and
this growth can be measured to indicate the amount of a micronutrient present in a sample [210]. Microbiological
inhibition assays were previously the widely-accepted optimal reference standard, but improvements in LC and
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spectroscopy highlight their relatively poor precision and accuracy. These flaws have relegated microbiological
inhibition assay methods to be used mostly during screening or in resource-constrained testing, except for
some micronutrients, where they remain the standard. Another common type of assay applied in studies is the
enzyme-linked immunosorbent assay (ELISA). An ELISA test is used for measuring antibodies in blood, and is a
useful clinical screening tool for further testing [92]. While not the optimal reference standard for the assessment
of micronutrient status, ELISA tests can yield valuable data for studies that are time or resource limited. Lastly,
we find that antibody or immunoassays as well as colorimetric and fluorometric assays are popular in emerging
accessible and non-invasive assessment technologies.

Modern optimal reference standards overwhelmingly apply LC-coupled spectroscopy [74, 210] (Table 1). LC is
defined as “a separation process used to isolate the individual components in amixture” [29]. High-performance LC
(HPLC) uses pressure to facilitate the separation process, reducing the time required. It is commonly coupled with
mass spectroscopy (MS) in optimal reference standard approaches [74, 210]. Spectroscopy is the “investigation
and measurement of spectra produced by matter interacting with or emitting electromagnetic radiation” [1].
Every molecule reacts to the applied radiation in a unique way that allows us to “detect, determine, or quantify
the molecular and/or structural composition of a sample” [1]. MS is the most important subfield of spectroscopy
to understand for biochemical analysis. It measures the mass-to-charge ratio of the molecules in a sample as a
way to determine and quantify the composition of molecules in the sample [1]. This is done by vaporizing the
molecules in a sample into gas-phase ions, which are then sorted by their mass-to-charge ratios. We will discuss
other forms of spectroscopy and their utility for micronutrient status assessment further in Section 3.4.

Matrices are the biosamples that are the subjects of the aforementioned methods of analysis. Most are blood
based, but in a few cases urine is used in the optimal reference standard (mostly for water-soluble vitamins)
[74]. Blood matrices are whole blood, washed red blood cells, plasma, and serum. Whole blood is blood as it
is from the vein (venous blood). Washed red blood cells are red blood cells that have been separated from the
other components of blood such as plasma, platelets, and white blood cells [85]. Plasma is obtained by adding
an anticoagulant to whole blood and placing it in a centrifuge [182]. Serum is obtained similarly to plasma,
except the blood is allowed to clot before centrifuging. However, blood can also be obtained from the capillaries
(capillary blood) as opposed to the vein, often via a finger prick. Capillary blood is often easier and cheaper
to obtain, especially via untrained personnel, but contains a mix of venous and arterial blood, together with
interstitial fluid which surrounds cells in the body [158]. Because of this, test results on capillary vs venous blood
can differ (e.g. hemoglobin concentrations are higher in capillary blood) and so the two should not be considered
interchangeably.

Table 1. Optimal Reference Standard Methods of Assessing Micronutrient Imbalance. Information from [18, 74, 127, 133,
210].

Micronutri-
ent

Method Biomarker Matrix Intervals Impact of Inflammation Approx. Cost
(US; Walk-In
Lab)

Vitamin B1 Erythrocyte
transketo-
lase activity
coefficient
assay

Increase in erythrocyte transketo-
lase activity

Washed red blood
cells

Deficient: >25%; Insufficient:
15-25%; Sufficient: <15%

None on direct plasma
levels

$65

Vitamin B2 Erythrocyte
glutathione
reductase
activity
coefficient
assay

Increase in erythrocyte glutathione
reductase activity

Washed red blood
cells

Deficient: >40%; Insufficient:
20-40%; Sufficient: <20%

Decrease in plasma
levels (erythrocyte
assays are more stable)

$120

Continued on next page
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Micronutri-
ent

Method Biomarker Matrix Intervals Impact of Inflammation Approx. Cost
(US; Walk-In
Lab)

Vitamin B3 LC-MS/MS Niacin metabolites (NMN and 2-pyr,
limited representation of stores and
recent intake)

Urine Deficient: <5.8; Insufficient:
17.5-5.8; Sufficient: >17.5
mcmol/day

Lack of evidence $179

Vitamin B5 LC-MS/MS Pantothenic acid (requires enzyme
pretreatment)

Whole blood Deficient: <0.22; Sufficient:
0.35-0.59 mg/L

Lack of evidence $149

Vitamin B6 HPLC or
LC-MS/MS

pyridoxal phosphate (PLP) Plasma or serum Sufficient: >4.94 or >7.41 `g/L
plasma PLP (varies by source)

Decrease in plasma
PLP, no effect on RBC
concentration

$69

Vitamin B7
[43]

LC-MS/MS
for biotin;
gel densit-
ometry for
MCC/PCC
[117]

Biotin (less sensitive); holo-MCC
and holo-PCC (only reliable
markers)

Urine for biotin;
WBCs for
MCC/PCC

Sufficient: 4.4-31 `g/day
urinary biotin, 8.2 arbitrary
units holo-MCC, 9.1 arbitrary
units holo-PCC

None on biomarkers $199

Vitamin B9 LC-MS/MS Folate Serum for altered
exposure and
recent intake;
Red blood cell
for long term/3
month status and
storage levels

Sufficient: >3 ng/mL serum,
>140 ng/mL RBC

Lack of evidence $29

Vitamin
B12 [3]

GC-MS B12, confirmed with methylmalonic
acid (MMA, also related to B2, B6,
folate); no single ’optimal reference
standard’

Plasma or serum Deficient: <200-250 pg/mL
B12, >0.03 mg/L MMA (some
debate over this)

Association with
increased B12 levels

$35

Vitamin C HPLC Ascorbate Plasma (some
claim serum
should be
avoided)

Deficient: 1.94; Insufficient:
2.11-4.05; Sufficient: 4.05
mg/L

Decrease in plasma
ascorbic acid (rapid,
decrease when CRP >10
mg/L, normal values
not detected if CRP >40
mg/L)

$49

Vitamin A LC-MS/MS Retinol (only sensitive to deficiency
or excess in storage, affected
by infection and protein/zinc
deficiency). Best method is to
indirectly measure reserves in liver
over several days of administration

Plasma or serum Severely deficient: <0.1;
Deficient: 0.1-0.2; Sufficient:
0.3-1; Toxic: >1 mg/L retinol

Decrease in serum
retinol (adjustment
equations exist but
are not universally
applicable, e.g. BRINDA
[115])

$58

Vitamin D
[157]

LC-MS/MS 25(OH)D (calcidiol) Plasma or serum Deficient: <12; Insufficient:
12-<20; Sufficient: 20-50;
Toxic: >50 ng/mL (not
definitively established/linked
to clinical outcomes, varies
based on assay and lab)

Decrease in plasma
levels (all values below
reference ranges with
CBP >40 mg/L)

$59

Vitamin E LC-UV Ratio of Vit E to total blood lipids Plasma or serum Insufficient: <5.17 mg/L Vit
E, <0.8 mg Vit E/g total lipid;
Sufficient: 8.6-13 mg/L Vit E
(adults have higher levels)

Some effects (blood
concentrations less
interpretable at CRP
>80 mg/L)

$48

Vitamin K Immuno-
based
assays

Plasma phylloquinone (usually
for short term intake, no single
‘optimal reference standard’);
prothrombin time (time to blood
clot, only clinically relevant mea-
sure); variety of other ’functional’
biomarkers

Plasma Deficient: <0.15; Sufficient
(fasting): 0.15-1 `g/L

Status associated with
lower inflammatory
marker concentration

$96

Continued on next page
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Micronutri-
ent

Method Biomarker Matrix Intervals Impact of Inflammation Approx. Cost
(US; Walk-In
Lab)

Iron
[55, 58]

Electrochemi-
luminescence
immunoas-
say
(ECLIA)

Ferritin for deficiency (first phase,
evaluates storage, inflated by
infection); Iron increase after
supplementation for malabsorption;
Hemoglobin used to confirm IDA

Serum Iron-deficiency anemia:
<10, Deficiency: 10-30 `g/L
ferritin

Ferritin may be
inflated, falsely
normal/misleading
(adjustment equations
exist but are not
universally applicable,
e.g. BRINDA [115])

$29

Copper ICP-MS Copper or ceruloplasmin (CP),
neither reliable

Serum Depletion: <50.8 (copper);
Deficient: 50.8-76.2 (copper,
high CRP); Sufficient: 63.5-
158.9 `g/dL (copper), 180-400
mg/L (CP)

Increase in plasma
concentrations

$33

Zinc [143] Atomic
Absorption
Spec-
troscopy
(AAS)

Zinc (levels are halved by Systemic
Inflammatory Response Syndrome,
can be normal with clinical
symptoms present, levels vary with
time of day so it is recommended
that albumin and CRP changes are
taken into account)

Plasma or serum Deficient: 70 women, 74
men; Insufficient: 70/74-80;
Sufficient: 80-120 `g/dL

Decrease in plasma
levels (significant
when CRP exceeds
20 mg/L, adjustment
equations exist but
are not universally
applicable, e.g. BRINDA
[115])

$38

Iodine ICP-MS Iodine Urine (24h
or random),
serum less
recommended

Depletion: <20, NA; Deficient:
20-100, <40; Sufficient: 100-
300 `g/24hr urine, 40-100
`g/L serum (levels should
be higher in those who are
pregnant or lactating)

Lack of evidence $89

Selenium AAS,
ICP-MS

Selenium (recent intake) or
Selenoprotein P

Plasma or serum Deficient: <60; Sufficient: >60;
Toxicity: >474 to 948 `g/L Se
(intervals vary by source and
population: women and black
people have naturally lower
concentrations)

Decrease in plasma
levels proportional to
inflammation, can be
adjusted for

$99

Magnesium AAS Magnesium Serum (little
correlation with
overall status
or tissue stores)
and urine (after
supplementation)

Deficient: <18.23; Sufficient:
18.23-23.1 mg/L serum Mg

$28

3.2 Assay-Based Technology
One of the largest areas of work applicable to micronutrient status explored by this review is quantitative
assays. Although we cover many different types of quantitative assays, a comprehensive review of lateral flow
quantitative assays by Urusov et al. [192] provides a robust background for how these devices work. Lateral flow
(immunochromatographic) assays indicate that a target compound is either present in the sample or present
in excess of a particular threshold, usually via staining on the test membrane. These types of assays are useful
for tests that benefit from quick conclusions (e.g. pregnancy tests). The most prevalent approach for extracting
quantitative information from lateral flow assays is via optical signal registration [192]. This method involves the
analysis of absorbed and reflected light from the test surface and the staining upon it, similar to the practice of
spectrophotometry. The test/control ratio is a common metric used to quantify the magnitude of this staining
relative to a control or reference area. Some commercially-available devices are limited to automatically confirming
the presence of the test line, while others can use line intensity to calculate analyte content. Urusov et al. [192]
note that portability has become a recent focus in this market, and this is not just limited to specialized devices in
a portable platform. Smartphones have been successfully used for optical signal registration, even with fluorescent
labels that decrease detection limits. Some manufacturers provide their own smartphone apps for quantitative
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(i) (ii)

(iii)

Fig. 1. (i) A smartphone camera and LED flash can be used to analyze results from a colorimetric assay. Used with permis-
sion from Kong et al. [98]. (ii) The design of a multiplexed sweat sensor using microfluidics. Used with permission from Kim
et al. [89]. (iii) The design of a colorimetric sweat sensor using microfluidics. Used with permission from Kim et al. [88].

analysis, but controlling for lighting and positioning is a challenge. To address this issue, another approach
is the use of a standardized scanning device to collect image data and the off-device analysis of the image by
specialized software. More experimental approaches, such as magnetic and electrically conductive labels, have
also surfaced but have yet to mature. Tables 2, 3, and 4 present a summary of assay-based methods developed for
micronutrients.

3.2.1 Sweat-Based Colorimetric Sensors. Colorimetrics uses reagents to react with an analyte and change color
to indicate concentrations of target substances. This color can be analyzed by a camera, such as in a smartphone
as demonstrated in Figure 1(i) by Kong et al. [98]. Most sweat-based sensors use microfluidic devices for the
collection of sweat [81]. These devices use very tiny valves and channels to “capture and store sweat on the
surface of the subject’s skin” via the natural pressure of sweat glands [81]. Sekine et al. [163] demonstrated a
microfluidic skin patch with fluorometric probes that aimed to analyze chloride, sodium, and zinc in sweat. A
smartphone attachment was designed to take light from the camera’s flash and pass it through an excitation
filter, allowing only a particular wavelength through. Similar to other quantitative assays, normalized intensity
can be calculated against a reference and used to determine biomarker concentration and calibration curves for
each nutrient were determined by known concentrations in spiked synthetic sweat. The authors claimed a strong
correlation and accuracy, but do not report exact results. Field studies were conducted where sweat was induced
in human volunteers (undisclosed sample size). Measured concentrations were compared to ion chromatography
(chloride), atomic absorption spectrometry (AAS; sodium), and inductively coupled plasma mass spectrometry
(ICP-MS; zinc). Again, no statistical analysis of results is presented and it appears zinc measurement was the
most inaccurate and subject to the most variance.
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A paper by Kim et al. [88] described on-body colorimetric measurement of vitamin C, calcium, zinc, and iron
using sweat as a biofluid (Fig. 1(ii)). A bespoke colorimetric assay was used for each micronutrient, assessed with
known concentrations in a buffer solution. Since temperature and pH can affect colorimetric results, the authors
conducted tests within the normal range of body temperature and pH in sweat, finding only a slight shift in
results. Uniquely, micronutrients could be supplemented transdermally through the patch itself. Multiple on-body
tests were conducted with 7 volunteers (4 male). Sweat was induced by a sauna before and after supplementation
(either orally or transdermally). Patch-based measurements were found to be correlated with ICP-MS results.
Although the paper claimed that “sweat chemistry correlates, at least semiquantitatively, to plasma chemistry”
for these micronutrients [88], this claim is based on the time dynamics of concentrations after supplementation
rather than a comparison to an optimal reference standard status assessment (Table 1). Furthermore, the clinical
literature points out that that vitamin C and iron concentrations in sweat have been shown to have little to no
correlation with levels in blood [12, 13]. Therefore, we argue that this device provides insights into the rate of
excretion of these micronutrients rather than their status. Lastly, there is no analysis of possible measurement
bias induced by transdermal supplementation at the point of sweat collection.

3.2.2 Sweat-BasedMultiplexed Sensors. Multiplexed analyses combine and analyze data from assays withmultiple
sensors such as electrocardiogram (ECG), temperature, electrodermal activity (EDA), HRV data and more. Thus,
these multiplexed sensors can enable more complex physiologic monitoring and diagnosis. For example, EDA
measures the change in skin conductance caused by sweat, an indicator of nervous system arousal [148], which
can be associated with micronutrient status (Section 2.3).

Kim et al. [89] developed an on-body biosensing platform that could collect and analyze cortisol, glucose,
and vitamin C in sweat using microfluidics (Fig. 1(iii)). The device included a lateral-flow assay for cortisol and
fluorometric assays for glucose and vitamin C. Assay results were imaged with a smartphone (with special lenses
in the case of fluorometry) and were analyzed to yield quantitative results. There were also electrodes for sweat
rate and EDA. The focus in the paper was on stress indicators. Field-testing of the device for cortisol assessment
involved subjecting 2 participants to “intensive work periods” (interrupted sleep schedule and caffeine intake) for
7 days then rest (regular schedule) for 14 days [89]. Additional tests with 2 different participants for all target
biomarkers involved subjecting participants to intensive work followed by a regular schedule and vitamin C
supplementation for 14 days. Spikes in vitamin C associated with intake could be observed under these conditions.

For a more in-depth review of the nuances of creating wearable multimodal sensors with sweat collection and
analysis capabilities, we direct the reader to [208].

3.2.3 Smartphone-based Quantitative Assays. Smartphones are increasingly being used as analytical platforms
for quantitative assays. Often, the phone is either used to photograph the assay results for quantitative analysis
[40, 46, 103, 104, 149, 166, 167, 176], or it communicates with a more specialized and standardized sensing device
[102, 113, 195]. Lee et al. [103] demonstrated the use of smartphones to image and quantify vitamin D (calcidiol)
levels from an immunoassay. After the sample is deposited on the test and incubated for a few hours, the
assay was imaged using a custom smartphone accessory. The device was evaluated using three levels of known
concentrations that span from deficiency to sufficiency, but not excess, although this range is debated (Table 1).
Results were compared to an ELISA test. The same researchers developed a smartphone-based assay method
(dubbed “the Nutriphone”) for B12 quantification [104]. Twelve human subjects provided capillary blood samples
from a finger prick, and assay results were compared to an Immulite 2000 immunoassay system. On these samples,
the Nutriphone failed to accurately determine B12 levels above 441 pg/mL. Unlike the Immulite, this solution
appears to be insensitive to the upper spectrum of serum vitamin B12 concentrations (Table 1). In addition, while
the authors do not specify the form of vitamin B12 their device aimed to investigate, the reported molecular
weight is closest to the non-optimal reference standard cyanocobalamin. As reported in Table 1, vitamin B12 has
no single optimal reference standard, but it is often confirmed with methylmalonic acid. The authors suggest that
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Table 2. Assay-Based Methods Using Sweat

Method Platform Targets Analytes Evaluation Control Results Notes Source

Fluorometry Wearable patch Chloride,
sodium,
and zinc

Sweat Human
subjects

Ion chromatog-
raphy (chloride),
AAS (sodium),
ICP-MS (zinc)

Zinc measurement
was the most inaccu-
rate and subject to the
most variance

Statistical
analysis of results
is not presented

[163]

Colorimetry Wearable Vitamin
C, calcium,
zinc, and
iron

Sweat Human
subjects

ICP-MS on
diluted sweat
samples and
supplementation

Correlations with
ICP-MS of 0.926
for Vit C, 0.743 for
calcium, 0.895 for
zinc, and 0.963 for
iron, time dynamics
of measurements after
supplementation were
in line with those of
blood

Sensor can also
supplement
micronutrients
transdermally

[88]

Fluorometric
and lateral
flow assays

Wearable with
smartphone
analysis

Cortisol,
glucose,
and vitamin
C

Sweat Human
subjects

ELISA for corti-
sol, controlled
stress and diet

Cortisol aligned with
circadian rhythm
changes and had '2
of 0.7974 with ELISA,
observed spikes in
Vit C with intake, no
trends in glucose

Measurement
of sweat rate
and EDA, with
NFC and RF to
power them and
communicate
results

[89]

Fig. 2. The use of a smartphone-based assay for the quantitative assessment of iron in serum. Used with permission from
Serhan et al. [167].

future work should aim to be more effective at lower limits of detection and better account for interferents in
whole blood. An evolution of the Nutriphone assesses iron, as ferritin [176]. This assay was evaluated in-lab with
known concentrations of ferritin in spiked buffer (n=27) and serum samples (n=12) to optimize performance.
Human trials were also conducted (n=20) and results were compared to the Immulite 2000.

Serhan et al. [167] had a similar goal of using a smartphone-based assay to measure total iron in serum (Fig.
2). This paper focused on total iron instead of ferritin (the clinically-accepted biomarker for imbalance; Table
1) because it is “the most direct metabolite in the [iron] panel” [167]. Total iron can provide valuable insights
into iron status, thus it is a worthwhile target even if it is not the optimal reference standard [132]. This is the
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first work to consider the risks of excess iron, purposefully designing the assay to be sensitive to both deficiency
and excess with a “dynamic range of 50-300 `g/dL” [167]. Twenty capillary blood samples were collected via
a finger prick, and assay results were compared to optimized multi-well plate spectrophotometry. Additional
analysis found that their approach had a coefficient of variance of 10.5%, compared to 2.2% for the lab tests. One
unique form of validation here that did not appear in other work was specificity testing using interferent analytes.
The preceding method was approved upon with a new system to measure total iron levels from whole blood,
consisting of an iOS smartphone application, a 3D printed sensing chamber, and a vertical flow membrane-based
sensor strip [166]. The smartphone application’s accuracy and precision were tested against a reference imaging
software (ImageJ) for the same colorimetric sensing strip. They compared their iron detection technique to a
spectrophotometry-based laboratory test for iron detection on 14 venous blood samples from 9 volunteers (7
male) and found greater limit of detection (LoD) than the laboratory method (2.2 `g/dL) The authors discuss
future steps of expanding this tool toward measuring total iron binding capacity and saturation levels.

Ferreira et al. [46] developed an assay for urine, a biofluid that is less invasive than blood andmore representative
of status than sweat. Their paper presented a paper-based colorimetric assay for urinary iron and quantification
of results from images. The assay itself contained four columns of five sample units each. This design allows for
replicate results and outlier exclusion. Blank (water) samples were used to obtain a baseline signal intensity for
absorbance calculations and calibrate for urine color interference. Calibration curves were determined using iron
standards in water and synthetic urine. It was found that the phosphate and citric acid in the synthetic urine
significantly interfered with the slope of the calibration curve. The sensor was evaluated using volunteer urine
samples (n=26) pre-treated with nitric acid. The results were compared to AAS and found to be similar. Dortez
et al. [40] showcase another colorimetric assay for serum iron, quantified by smartphone images. The assay was
developed using iron standard solutions and evaluated using diluted serum spiked with Fe3+. It was found that
the assay could analyze multiple samples simultaneously, allowing for auto calibration of test samples against a
certified reference control. Prakobdi et al. [149] claimed to present a noninvasive saliva-based screening test for
IDA using a nitrocellulose lateral flow system to measure iron (Fe3+) levels in spiked saliva. A reaction’s color
change was analyzed, and the results indicate a linear response in the 100-2000 `g/dL range (falling far above
the lower limit for ‘normal’ serum iron results [28]). The study used pooled commercial saliva, and it did not
compare measured iron levels with a clinical optimal reference standard for iron status assessment. In addition,
we note the general ambiguity of whether saliva levels of iron are an accurate indicator of circulating blood levels
(Section 2.2).

The smartphone moved into a supporting role in Lee et al. [102]. The authors implemented a paper-based
microfluidic immunoassay for vitamin A (as retinol binding protein or RBP), iron (as ferritin), and C-reactive
protein (CRP) in a unique platform that resembles a flat, portable index-card design. Most notably, it was able to
analyze whole blood with minimal pre-treatment because of built-in plasma separation (similar to [166]). The
device included competitive assays for CRP and RBP and a sandwich assay for ferritin. Sandwich-based assays
are more sensitive, while competitive assays are more effective for analytes of larger concentrations. CRP is a
useful inclusion since both iron and vitamin A assessment are impacted by inflammation (Table 1). On-device
light emitting diodes (LEDs) and photodetectors analyzed the assay, sending results and various test metrics to a
smartphone app over NFC. The added ability to store this data in a remote server made the device a powerful
tool for population-level screening. The device was evaluated on whole blood samples (n=95), each run 3 times,
and compared to ELISA. A documented 84.4% of sample was male, and 6 samples were spiked with ferritin, CRP,
and RBP to assess a wider range of concentrations. For evaluation, a physiologically-relevant cutoff of 15 `g/L
was set for ferritin deficiency (although this is insensitive to the deficiency upper limit of 30 `g/L; Table 1). The
decision to make this device single-use is perplexing, especially since a reusable version was used for testing. We
would also like to note that RBP is not the clinically-accepted biomarker for vitamin A in serum, which should be
measured directly instead (Table 1).
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The approach in Lu et al. [113] achieved simultaneous quantification of vitamin A (as RBP), iron (as ferritin),
and CRP on a single test strip using multiple fluorescent markers and immunoassays. The paper proposed a
reusable, standalone reader (the TIDBIT). Interestingly, quantitative results were only presented to the user if
they are within a “physiologically relevant dynamic range” of 2.2-20 `g/mL for RBP, 12-200 `g/L for ferritin,
and 0.5-10 `g/mL for CRP [113]. We note that the ferritin detection range sufficiently covers iron deficient
status, but does not extend into the threshold which indicates iron-deficiency anemia (IDA; <10 `g/L; Table 1).
Although a complete blood count (CBC) test that measures hemoglobin is the standard method for diagnosing
anemia more generally, an additional ferritin assessment is still useful to determine if the patent suffers from
IDA (the most common type of anemia) [131]. Furthermore, ferritin status can inform the clinician whether iron
supplementation is an appropriate treatment for the anemia, as over-supplementation and excess can lead to
adverse effects [130]. To assess the TIDBIT device, forty-three human serum samples were purchased from a
commercial vendor for testing and compared against ELISA [113]. While the R² for the RBP assay was lower
than for the other biomarkers, the authors explained that the assay was optimized for high sensitivity and
specificity near the diagnostic cutoff for vitamin A deficiency, rather than for precise quantification across the
entire physiological range.

This TIDBIT device was applied further in Vemulapati et al. [195], which examined vitamin D (as 25(OH)D3)
via the assessment of capillary blood from a finger prick with no pre-treatment. In testing, the test/control ratio
was highly correlated to vitamin D concentrations in standard solutions. Commercial serum standards highly
correlated with assay results (4-parameter logistic curve), with coefficient of variance (CoV) of 2.63% at 34 ng/mL
and 11.2% at 0 ng/mL. Human trials with serum (n=21) and capillary blood (n=6) samples were conducted, and
results were compared to LC-MS/MS measurements. The accuracy of deficiency detection was assessed for serum
but not whole blood with an area under the curve (AUC) of 0.836 for deficiency cutoffs of 20 ng/mL and 1 for 12
ng/mL. Only the latter aligns with the general clinical threshold for deficiency (Table 1).

3.2.4 Commercial Products. Commercially-available devices have emerged in recent years to provide point of
care (PoC) testing for some micronutrients [2, 5, 36, 47]. One study has explored the utility of a commercial
iCheck FLUORO device to assess vitamin A concentrations in human milk (human milk vitamin A or HMVA) [2].
HMVA is critical since it is the primary source of vitamin A for breastfeeding children. If there is a vitamin A
deficiency in human milk, it is likely to cause developmental issues for a child. The authors collected human
milk samples and socio-demographic and anthropomorphic data from lactating mothers in the Mecha district,
Ethiopia (n=104). This region was selected because prior studies applying this device for HMVA assessment
recommended further investigation of populations at greater risk of vitamin A deficiency. Concentrations of
vitamin A in human milk were measured by iCheck FLUORO and compared to HPLC. The commercial device
was found to overestimate low HMVA concentrations and had a weak overall correlation with HPLC results.
Therefore, the paper concluded that studies which assess vitamin A intake among breast-feeding children in
developing countries should not assume average HMVA. It was argued that devices like the FLUORO are needed
to monitor HMVA status, especially for intervention programs that typically assume average HMVA. Still, they
must be “reliable across a range of HMVA concentrations” [2].

Albrecht et al. [5] likewise studied the efficacy of the Quidel Inc Sofia fluorescent immunoassay for serum
vitamin D (as calciol). It should be noted that calciol is an inactive form of vitamin D, distinct from the optimal
reference standard of calcidiol for vitamin D status. The assay was analyzed by the Sofia Analyzer, a PoC device
for immunoassay analysis. A total of 324 samples were collected and 296 were used (229 female). Additionally,
433 tests were run using both frozen (208) and fresh samples (88). Notably, the researchers also assessed random
error and inter-operator reliability for the device. Because only one sample had a concentration above 100 ng/mL,
the authors recommend additional testing for concentrations above 80 ng/mL (well into the range of toxicity;
Table 1).
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Table 3. Assay-Based Methods Using Smartphones

Method Platform Targets Analytes Evaluation Control Results Notes Source

Quantitative
immunoassay

Smartphone-
based

Vitamin D
(calcidiol)

Serum Known sample
solutions
and human
subjects

ELISA Errors “at same order”
as ELISA

No statistical
analysis of results

[103]

Quantitative
immunoassay

Smartphone-
based

Vita-
min B12
(cyanocobal-
amin)

Capillary
blood sample

Human
Subjects

Immulite 2000
Immunoassay

Correlation of 0.93
with control, 85%
specificity and 60%
sensitivity for
deficiency detection

Used synthetic
form of B12; poor
accuracy outside
of deficiency
range

[104]

Quantitative
immunoassay

Smartphone-
based

Iron (total) Capillary
serum sample

Human
Subjects

Multi-Well Plate
Spectrophotome-
try

'2 of 0.98 with
control, CoV of 10.5%

Conducted speci-
ficity testing
using interferent
analytes; consid-
ered toxicity

[167]

Quantitative
immunoassay

Smartphone-
based

Iron (total) Capillary
blood sample

Human
Subjects

Laboratory
developed test:
spectrophotometry-
based technique

Correlation plot with
slope of 1.09, R2 of
0.96, and a mean bias
of 5.3%

Improved on
control LoD;
manually diluted
some samples
to represent
a low iron
concentration

[166]

Quantitative
immunoassay

Smartphone-
based or portable
device (TIDBIT)

Iron
(ferritin)

Capillary
blood sample

Human
Subjects

Immulite 2000
Immunoassay

Correlation of
0.92 with control,
sensitivity of 0.9 for
deficiency detection

[176]

Quantitative
immunoassay

Portable device
(TIDBIT)

Vitamin D3
(calcidiol)

Serum and
whole blood

Commercial
standards;
human
subjects

Known solutions;
LC-MS/MS

CoV with standards
of 2.63% at 34 ng/mL
and 11.2% at 0 ng/mL;
'2 of 0.91 for serum
tests, 0.94 for capillary
blood tests

[195]

Colorimetric
assay

Paper-based Iron (total) Urine Human
subjects

AAS RSD of 9.5% Urine citric acid
was found to
interfere with
results

[46]

Colorimetric
assay

Paper-based Iron (Fe3+) Serum Spiked, diluted
from human
subjects

Spiked known
concentration

Error of 3.7% and RSD
of 1%

LoD of 0.3
`g/mLl

[40]

Colorimetric
assay

Paper-based Iron (Fe3+) Saliva Spiked pooled
commercial
saliva

Spiked known
concentration

'2 of 0.99 It is debated
whether salivary
iron reflects
circulating status

[149]

Opto-
electronic
immunoassay

Card Vitamin A
(RBP), Iron
(ferritin),
and CRP

Whole blood Human
subjects

ELISA CVs of 2.5% for
ferritin, 10.8% for RBP,
and 3.9% for CRP

Cutoff for iron
deficiency was in-
sensitive to upper
limit; RBP is not
the clinically-
accepted
biomarker
for vitamin A
status; Device
transmits results
to a smartphone
over NFC

[102]

Multiplexed
quantitative
assay

Portable device
(TIDBIT)

Vitamin A
(RBP), Iron
(ferritin),
and CRP

Serum Human
subjects

ELISA '2 of 0.56 for RBP,
0.92 for ferritin, 0.88
for CRP

Ferritin range
does not cover
anemia; RBP is
not the clinically-
accepted
biomarker
for vitamin A
status; RMSE
for RBP was 21
`g/mL

[113]

ACM Trans. Comput. Healthcare

 



Towards an Accessible, Noninvasive Micronutrient Status Assessment Method • 19

Bloom Diagnostics is a home use ‘lab’ device that analyzes single-use qualitative test strips to quantitatively
assess the status of in-vitro (in-body) biomarkers, similar to the TIDBIT [36, 113, 195]. Tests available for Bloom
include thyroid-stimulating hormone (TSH), ferritin, CRP, and estimated glomerular filtration rate with cystatin
C. While Bloom approaches the goal of accessible nutrition assessment, its assays still require the user to collect
a sample themselves. Depending on the test, this could involve a finger prick, coaxing the blood into a collection
tube, and depositing it properly onto the assay. VitaScan is another commercial PoC device that tests for iron
deficiency, and they validate results against the clinical optimal reference standard for in-body iron measurement
[47]. The device is not yet released, but it is planned to assess vitamins B12, D, and A and CRP in the future. The
method is still invasive as it utilizes capillary blood obtained from a finger prick and also requires the user to
obtain the sample themselves.

Table 4. Commercial Assay-Based Methods

Method Platform Targets Analytes Evaluation Control Results Notes Source

Fluorometry Portable
device

Vitamin A
(retinol and
retinyl esters)

Breast milk Human
subjects

HPLC Weak correlation
('2=0.59, p<0.001),
but mean difference
was “not statistically
different from zero”

Of major concern
was the ability for
the breast milk to
satisfy the vitamin
A requirements of
children

[2]

Immuno-
fluorescence

Portable
device

Vitamin D
(cholecalcif-
erol)

Serum Human
subjects

Abbott Alinity i
immunoassay

'2 of 0.89; SE of 0.16
at 10 ng/mL, 0.19 at 12
ng/mL, and 0.35 at 30
ng/mL

Standard error lower
than control; recom-
mends additional
testing for excess
status; target is not
the clinically-accepted
biomarker for Vitamin
D

[5]

Quantitative
immunoassay

Home use
device

Iron (ferritin),
other tests

Capillary
blood
sample

Not
published

Not published Not published Commercially available [36]

3.2.5 Comparison. Although they are the most accessible and noninvasive, sweat-based assays are generally not
a viable alternative to clinical methods of micronutrient status assessment given the current clinical knowledge
about the correlation between sweat and blood concentrations of micronutrients. A critical tradeoff exists
between accessibility and accuracy, yet until the clinical literature has reached an agreement on which alternative
biosamples (i.e. not blood or urine) are most appropriate for the assessment of in-body status, it may be more
productive to pursue accessibility through device design rather than through the biosample analyzed so as to not
sacrifice clinical-relevance.

Microfluidics and smartphone-based quantification systems may deliver on accessibility and noninvasiveness.
The former enables analysis on a small volume of a biosample, meaning that less of the sample needs to be
collected (via potentially invasive means in the case of blood). The latter decreases reliance on commercial assay
analyzers, which may only operate on proprietary assays, and enables accessibility through portability and
cost-effectiveness.

As opposed to other types of assays (e.g. immunoassays), colorimetric assays have been overwhelmingly
applied to the assessment of iron (with one expanding to sweat vitamin C, calcium, and zinc). This may indicate
the poor versatility of colorimetric assays, whereas other assay techniques are able to assess a wider variety of
biomarkers, largely through adjustments to the antibodies used in the assay. The trend of multiplexed assays
in both sweat-based and non-sweat-based sensors is therefore a promising means to balance the pros and cons
of different assay types. While multiplexed solutions may increase cost, we argue that the potential to assess
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multiple biomarkers at once significantly decreases the burden on the patient and the clinician caused by the
need to use multiple assays/devices.

3.3 Electrochemistry-Based Methods
Electrochemical analysis is a method that has been applied in literature to quantify levels of micronutrients in
biofluids such as saliva, sweat, tears, urine, and blood. Huang et al. [71] summarizes the basis of electrochemical
sensors with respect to vitamins, but we see work applying these ideas to minerals as well. The concentration
of vitamins in an electrolyte (water or fat/organic solution that allows for the transfer of electrons) can be
quantified by measuring electrical properties at a working electrode. The most common measurement techniques
are voltammetry and amperometry. Voltammetry applies a varying voltage to the electrolyte and measures the
resulting current, while amperometry applies a constant voltage and measures the resulting current over time
[63]. Below, we dive into novel methods that were evaluated in biofluids, roughly divided into voltammetry and
amperometry. For more detailed discussions, we direct the reader to recent reviews focusing on electrochemistry-
based methods (e.g. [71, 93, 141, 160]). A summary of electrochemistry-based methods reviewed herein is found
in Tables 5, 6, and 7.

3.3.1 Voltammetry. Voltammetry has been a popular method for the assessment of micronutrients in biofluids.
Revin and John [155] proposed a novel electrode for the simultaneous measurement of vitamins B2 (riboflavin),
B9 (folic acid), and C (ascorbic acid). Peak currents for each vitamin were well separated at mixtures of various
concentrations. For vitamin C in particular, the tested linear range of the sensor was insensitive to the lower
limit of sufficiency and below (Table 1). Additionally, the analyzed biomarkers for vitamins B2 and B9 differed
from their clinical optimal reference standard. Selectivity analysis showed that linearity in each vitamin was
maintained even in the presence of elevated concentrations of all other vitamins. No interference from other
common physiological interferents was found. Two plasma samples from a clinical laboratory were diluted and
tested before and after spiking with vitamin standards, with good recovery. Another electrode was developed by
Jothimuthu et al. [82], examining zinc. Interestingly, a sample pH of 6 was optimal for zinc assessment, which is
more acidic than most biofluids (e.g. blood has a pH of 7.35-7.45). The zinc content in both acetate buffer and
spiked, HCl-diluted serum was evaluated. A square wave voltammetric sensor was developed for the simultaneous
measurement of glutathione (GSH), nicotinamide adenine dinucleotide (NADH) and folic acid (vitamin B9) [153].
A single urine and serum sample was collected for evaluation and spiked with known amounts of the targets.
The authors did not present serum results.

Kim et al. [87] designed a square wave anodic-stripping voltammetric sensor to monitor zinc in sweat during
physical activity. The sensor itself was wearable, printed on tattoo transfer paper. The assessment was conducted
with standard zinc solutions in a buffer medium. On-body experiments (7 participants, 5 male) demonstrated the
sensor’s ability to assess zinc in cycling-induced sweat, which was found to be close to the physiological range.
Again, no clinical reference standard assessment methods for individual zinc status were used for comparison.
However, this is less of a concern since this work explicitly focuses on providing insights into zinc excretion
through sweat rather than determining in-body status.

Gao et al. examined zinc as well as copper using voltammetry Gao et al. [50]. A wearable electrochemical sensor
was created to assess Zn, Cd, Pb, Cu, and Hg ions in sweat and urine. Uniquely, the sensor incorporated skin
temperature measurement for calibration, and to compensate for the influence of temperature on electrochemical
signals. This was important, as peak current was shown to increase with temperature. The device was developed
with spiked synthetic sweat samples at concentrations an order of magnitude lower than is observed in blood
(Table 1). Calibration curves demonstrate a linear relationship between peak current and concentration for the
ions, but quantitative metrics were not reported. The authors conducted a human study with a single participant
for on and off-body measurements with ICP-MS as a control. The measured and controlled concentrations for Zn
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and Cu were similar, but statistical analysis of the results was not conducted. In Stanković et al. [178], a novel
“boron-doped diamond electrode” for vitamin B12 (as cyanocobalamin) quantification was studied. Interference
analysis showed a 10% signal change in the presence of a “10-fold excess of vitamin B6” [178]. The sensor
was evaluated in four spiked urine samples, diluted, and pH adjusted to 2. In this case, the electrode analyzed
cyanocobalamin, which is the synthetic form of vitamin B12.

Sempionatto et al. [164] developed an eyeglasses-based platform to conduct electrochemical analysis of tears,
assessing the concentration of glucose, alcohol, vitamins B2, B6, and C. Tears were induced with menthol sticks
before being collected and analyzed by the glasses. The sensor itself used square wave voltammetry (SWV) for
vitamin measurement, demonstrated only as a proof of concept. After a baseline was acquired with the sensor,
tears were induced from 3 participants and analysis was conducted every 30 minutes for 2 hours after taking a
multivitamin. Peak potentials emerged for each vitamin and were verified with known concentrations of vitamins
added to baseline tear samples. Because this was a proof of concept, no comparison to optimal reference standards
with blood or efforts to quantify in-body vitamin levels were made.

A microfluidic, graphine-oxide-based sensor chip has been applied for the quantification of ferritin in serum
[51]. Notably, the sample must be pumped through the sensor, where cyclic voltammetry was performed continu-
ously with an external potentiostat. An evaluation was conducted with spiked serum samples (which were not
sensitive to deficiency) and compared to ELISA. The sensor overestimated concentrations <100 `g/L by ∼10% and
underestimated the larger concentration by ∼4%.

Sun et al. [180] focused on reusability in vitamin C assessment. Their device used cyclic voltammetry to
determine whether the vitamin C content present in the sample is normal or deficient (<4.93 mg/L). This
deficiency threshold was greater than what is reported by the clinical literature, exceeding even the limit for
sufficiency (Table 1). Interestingly, their device was also self-powered, using vitamin C as a biofuel. In a trial
for scurvy detection (n=22), the device correctly determined the 4 deficient individuals (ground truth by HPLC).
The authors also demonstrated its potential to screen for patients exhibiting a medical condition, identifying 30
patients (total sample size unclear) who suffered from vitamin C deficiency during routine checkups. Of these,
>85% had a medical condition associated with inflammation and oxidative stress.

On-body electrochemical sensing of vitamins B6 (pyridoxine), C (ascorbic acid), D3 (calciol), and E (alpha-
Tocopherol), as well as 9 amino acids and several macros in sweat, was enabled by Wang et al. [199]. Of the
biomarkers examined for each vitamin, only the vitamin C biomarker aligned with the clinical optimal reference
standard biomarker. Sweat was passively sampled using iontophoresis in a watch-based platform. Voltammetry
was used to detect vitamins indirectly. Quantitative results were not reported, but concentrations of vitamins
appeared to linearly correlate with peak height current density. The authors noted the flexibility of this approach
to measure numerous other biomarkers. Human trials were conducted with healthy volunteers and patients but
only examined amino acids. This exemplifies the tendency of mainstream research to ignore micronutrients.

Lokesh Kumar et al. [110] developed a manganese dioxide nanoparticle–bimetallic metal-organic framework
composite to detect vitamin D3 in spiked human plasma. Voltammetry measurements were compared to a optimal
reference standard for vitamin D detection, HPLC with ultraviolet detection (HPLC-UV), and obtained similar
values. Seker et al. [162] designed a touch-based sensor that simultaneously monitored zinc and ascorbic acid
(vitamin C) levels after supplementation. The technique measured fingertip sweat and uses SWV for zinc detection
and potentiometric measurement for ascorbic acid detection. Lastly, Shi et al. [170] assessed an NFC-powered
sensor for riboflavin (B2) in sweat. Selectivity testing was conducted by the addition of common sweat molecules
into the standard, which did not significantly influence results. Uniquely, a pH sensor was incorporated into
the device to account or the influence of pH on measurements. Human trials involved subjecting participants
to exercise (n=1) or heat stress (n=2) to induce sweat after supplementation. Sweat samples were analyzed by
the device and compared to HPLC sweat measurements for the exercise trials and fluorescence spectroscopy for
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the heat-stress trials. The time-dynamics of the device results followed the general trend of the control analysis
methods, exhibiting more variance compared to urine results.

3.3.2 Amperometry. Vitamins B2, B9, C, and D, as well as the mineral iron, have been assessed in biofluids
using amperometry [116, 136, 159, 165, 211, 212]. Maiyalagan et al. [116] confronted a major limitation of glassy
carbon electrode-based sensors for vitamin B9 (folic acid): interference from vitamin C. Their nanofiber-modified
electrode successfully avoided this interference. In evaluation, two serum samples were collected and evaluated
before and after spiking with 4.41 `g/L of folic acid. The peak current increased accordingly, allowing for
greater than 99% recovery. Vitamin C is examined by Sempionatto et al. [165], who deployed amperometry and
immobilized ascorbate oxidase in a tattoo-based platform. Tests on human subjects (n=4) focused on the temporal
characteristics of the current response, finding peak response in sweat 90 minutes after supplementation and a
return to baseline 180 minutes after, in line with the plasma response of vitamin C. Tears and saliva were noted
as other possible biofluids, with tears yielding a similar temporal profile on a single subject (albeit with different
peak currents). The authors also experimented with supplementing vitamin C through orange juice, claiming
that the response from sweat samples increased in line with increasing vitamin C content (n=2). Crucially, no
statistical analysis was conducted on the results of the experiments, such as correlations between intake and
measured current. There were also no comparisons made to clinical reference methods of vitamin C assessment,
though this was stated as a subject for future work.

A wearable, electrochemical device to measure vitamin C levels in sweat, urine, and blood was proposed by
Zhao et al. [211]. The device was used in a study where 6 male participants, aged 20-30, were given vitamin C as
emergen-C brand supplements. The sensor was wearable, but no on-body measurements were made. Instead,
urine and induced sweat were collected three hours post-intake and measured with the device. Blood samples
were collected from a single participant in a separate study, analyzed with the device, and compared to results
from urine and sweat. This research did not compare device results to any optimal reference standard for vitamin
C assessment; instead, it relied on intake, which (as we will see in Section 4) is a poor equivalent for in-body status
due to individual differences in micronutrient absorption. In addition, we note that the vitamin C supplement,
emergen-C, contains several other nutrients that could influence the results of the analysis.

One paper proposed simultaneous measurement of vitamins C and D from a single saliva sample [159]. Their
sensor combined an electrocatalytic vitamin C (ascorbic acid) amperometric assay and competitive vitamin D
(25(OH)D3) immunoassay. Vitamin D was the clear focus of the paper, and the vitamin C sensor received little to
no attention aside from some analysis of potential cross-talk between the two sensors. The sensor was applied in
a study that supplemented vitamins to 3 participants and used the device to analyze saliva samples at increasing
time intervals from intake. No optimal reference standard assessment method was used to evaluate the sensors,
although the authors advocated for this evaluation and the development of truly quantitative sensors in future
work. Another flexible, electrochemical sweat biosensor for vitamin C used polyaniline film modified with phytic
acid [212]. The biosensor was validated with synthesized vitamin C samples of known concentrations. Four
human subjects were given supplements and had their sweat collected 3 times over 90 minutes. The sensor
detected a general increase in current from the sweat samples over time, with variation across subjects. Saliva
tests were also conducted. Peak current occurred 60 minutes after supplementation, in line with results from [165].
Another team of researchers designed a finger-actuated wirelessly-charging wearable that measures vitamin
C and levadopa (a central nervous system agent) levels from sweat [136]. The system had a microfluidic chip
with a self-driven pump and anti-reflux valve, a flexible wireless circuit board, and a companion smartphone app.
They ran a study with five healthy participants whose sweat was collected and measured after exercising and
ingesting vitamin C tablets as well as fava beans [136]. The results were not compared to clinical results as a
optimal reference standard baseline.
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Table 5. Electrochemistry-Based Methods Using Voltammetry

Method Platform Targets Analytes Evaluation Control Results Notes Source

Voltammetry Benchtop Vitamins B2
(riboflavin),
B9 (folic acid),
and C (ascorbic
acid)

Plasma Human subjects Spiked known
concentrations

>99% recovery of spiked
concentrations

Tested in 7.2 pH buffer, which
is slightly lower than pH of
blood (∼7.4); direct riboflavin
is not the gold-standard
biomarker for vitamin B2;
folic acid is the synthetic form
of folate; Linear range for
vitamin C did not reach below
the lower limit for sufficiency

[155]

Anodic stripping
voltammetry

Benchtop Zinc Serum Human subjects Spiked known
concentrations

Peak current decreased
with concentration, but
were lower in magnitude
than buffer

A sample pH of 6 was
necessary for optimal
performance

[82]

SWV Benchtop Vitamin B9
(folic acid),
GSH, and
NADH

Urine and
serum

Human subjects
(urine only)

Spiked known
concentrations

Accurate recovery of
spiked concentration

Simultaneous determination
of targets; unclear whether
pre-existing urine composi-
tion biased recovery; claims
serum evaluation but this is
not presented; folic acid is the
synthetic form of folate

[153]

Square wave
anodic stripping
voltammetry

Wearable tattoo Zinc Sweat Zinc stock
solutions

Known zinc
solutions

'2 of 0.999 for
measured current vs
stock solutions, LoD of
0.05 `g/mL

Zinc content in actual sweat
from single participant was
close to physiological range

[87]

Square wave
anodic stripping
voltammetry

Wearable patch Zn, Cd, Pb, Cu,
and Hg ions

Sweat and
urine

Human subjects ICP-MS Similar to control, but
provided no statistical
analysis

Included temperature sensor
to account for the influence
of skin temperature on peak
current

[50]

SWV Benchtop Vitamin B12
(cyanocobal-
amin)

Urine Diluted from
human subjects

Spiked known
concentrations

98-105% recovery Cyanocobalamin is the
synthetic form of B12

[178]

SWV and chronoam-
perometry

Eyeglasses Vitamins B2, B6,
and C, alcohol,
and glucose

Tears Human subjects Breathalyzer
BAC, commercial
glucometer, vitamin
supplementation

Correlations of 0.852
with BAC, 0.7 with
glucometer, distinct
voltage peaks for each
vitamin

Glucose and alcohol was main
focus, vitamin assessment
included as a proof of concept;
exact form of each vitamin is
not known

[164]

Cyclic voltammetry Benchtop Iron (ferritin) Serum Spiked from
human subjects

ELISA '2 of 0.966 and lower
linearity than control;
tended to overestimate
concentrations <100
`g/L

Range of spiked concen-
trations was not sensitive
to deficiency; studied the
impact of pH and interferent
compounds

[51]

Cyclic voltammetry Portable Vitamin C Serum Human subjects HPLC '2 of 0.984 (p<0.001)
and 100% accuracy in
deficiency detection

Targets scurvy (extreme
deficiency) but the threshold
was set above sufficiency

[180]

Voltammetry Wearable patch Vitamins B6
(pyridoxine), C
(ascorbic acid),
D3 (calciol),
E (alpha-
Tocopherol),
and other
macronutrients
and amino acids

Sweat Not reported for
vitamins

Not reported for
vitamins

Observable linear
relationship between
vitamin concentration
and peak height current
density

Only vitamin C aligns with
clinical standard, quantitative
results for vitamins were not
reported

[199]

Voltammetry Benchtop Vitamin D3 Plasma Spiked from
human subjects

Spiked known
concentrations and
HPLC-UV

LoD of 1.9 ng/mL; RSD
of 0.3-2.6% and recovery
of 96-102%

Exact form of D3 (gold-
standard 25(OH)D3/calcidiol
or calciol) not reported

[110]

SWV and potentio-
metric measurement

Portable Zinc and
vitamin C
(ascorbic acid)

Fingertip
sweat

Human subjects Supplementation Both micros could be
analyzed over time
simultaneously

No comparison to clinical
assessment of status or
statistical analysis of results;
Vitamin C range far exceeded
physiological concentrations
in plasma

[162]

Differential pulse
voltammetry

Wearable patch Vitamin B2
(riboflavin)

Sweat Human subjects HPLC '2 of 0.9783 with sweat
HPLC and 0.87 with
urine fluorescence
spectroscopy

Urine included as comparison
to sweat status; incorporates
pH sensor to control
for influence of pH on
measurements; direct
riboflavin is not the gold-
standard biomarker for
Vitamin B2 status

[170]
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Table 6. Electrochemistry-Based Methods Using Amperometry

Method Platform Targets Analytes Evaluation Control Results Notes Source

Amperometry Benchtop Vitamin B9
(folic acid)

Serum Human
subjects

Spiked known
concentrations

>99% recovery of
spiked concentration

Robust against
interference from
ascorbic acid; sensor
performance peaked
at pH 7.2, slightly
lower than pH of
serum; folic acid is
the synthetic form
of folate

[116]

Amperometry Wearable
tattoo

Vitamin C
(ascorbic
acid)

Sweat, tears,
and saliva

Human
subjects

Supplementation Similar time dynam-
ics to plasma for
tears and sweat

[165]

Amperometry Wearable
sensor chip

Vitamin C
(ascorbic
acid)

Sweat, urine,
and blood

Human
subjects

Supplementation/
intake, blood
measurements
with the same
sensor

Urine and sweat
measurements
increased after
intake, with inter-
trial variation.
Correlations with
blood sensor
measurements were
0.81 for sweat and
0.72 for urine

Used emergen-C
as a vitamin C
supplement, which
contains several
other micronutrients

[211]

Amperometry Wearable
sensor chip

Vitamin C
(ascorbic
acid)

Sweat and
saliva

Stock solu-
tions and
human sub-
jects

Known solutions
and supplementa-
tion

'2 of 0.99 and LoD
of 0.0299 `g/mL
for stock solutions,
was able to detect
general increase
in current after
supplementation

[212]

Electrocatalytic
vitamin C
amperometric
assay and
competitive
vitamin D
immunoassay

Portable Vitamins
C (ascorbic
acid) and D
(calcidiol)

Saliva Human
subjects

Vitamin supple-
mentation

Observable rise and
drop in levels over
time

No quantitative
results; saliva
sample must be pre-
treated; Vitamin C
has little evaluation

[159]

Chronoamper-
ometry

Wearable
sensing
system

Vitamin C
(ascorbic
acid) and
Levodopa

Sweat Human
subjects

Vitamin supple-
mentation

Detection correla-
tion coefficients of
both exceed 0.99;
both sensors have a
wide linear detection
range of 0-17.6 mg/L
and 0-1000 `M,
respectively, and low
detection limits of
0.05 mg/L and 17.9
`M, respectively.

The system is
wireless, battery-
free, flexible,
finger-actuated, and
self-pumping

[136]

3.3.3 Impedance Analysis. Heo et al. [69] focused on analyzing solely vitamin D (calcidiol) status using body
impedance. They explored the correlation between vitamin D levels in blood, body composition, blood parameters
from checkup, and arm impedance (from wrist to elbow) in 26 patients (14 male) to calibrate an impedance
measurement frequency for vitamin D [69]. The motivation was that “body fat accumulates vitamin D,” and body
fat can be measured by impedance measurement [69].

3.3.4 Comparison. Across voltammetry and amperometry, vitamin C, B vitamins, and zinc are the most common
targets of electrochemistry-based methods. However, a few do target vitamin D, which is the only target of the
impedance analysis technique. Voltametric devices were more often applied to blood or urine biosamples, and
the associated studies relied less on supplementation as a control compared to amperometry-based methods.
Amperometric devices appeared to focus more on a wearable form-factor. The single study using impedance
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Table 7. Other Electrochemistry-Based Methods

Method Platform Targets Analytes Evaluation Control Results Notes Source

Arm impedance
measurement
scan

Non-mobile,
clinical device

Vitamin D
(calcidiol)

Impedance
measurement
at 21.1 Hz

Human
subjects

Vitamin D
status by blood
test (method
unspecified)

'2 of 0.75 (regres-
sion with Vitamin D
level)

Also evaluated
regression models
with medical
checkup and body
composition analysis
data

[69]

analysis reported results which were less accurate than those reported by voltametric or amperometric approaches
to vitamin D assessment [69]. This may indicate that body impedance analysis is not a promising method for
future research, but we add that the results of this study may be more trustworthy than others due to its larger
sample size and evaluation in the context of optimal reference standard vitamin D status assessments using
blood. For these reasons, we cannot conclude whether impedance analysis is less promising than amperometry
or voltammetry.

3.4 Spectroscopy-Based Methods
Spectroscopy is the most common method of optimal reference standard micronutrient status assessment.
However, there is still a lot of work to do to make spectroscopic approaches more accessible and less invasive. We
begin with some definitions of common terms in the field. Spectroscopy is “the investigation and measurement
of spectra produced by matter interacting with or emitting electromagnetic radiation” [1]. Spectrometry is the
application of spectroscopy; the way in which quantitative measurements are obtained. When we speak of a
spectra, we mean any measurement that is a function of wavelength or frequency. A sample will absorb or emit
these spectra when electromagnetic radiation of a known wavelength is applied. Spectra are measured by a
detector, the spectrometer. Because the level of radiation applied is known, analyzing the resultant spectra after it
interacts with the sample provides information about the sample.

We have previously described MS and LC-coupled spectroscopy, the types of spectroscopy used by most
optimal reference standard clinical biochemical analyses (Section 3.1. As mentioned, these methods are expensive,
non-specific, complex, and often require an invasively-collected biosample. While there have been strides to
make MS more accessible [33], we focus on alternative spectroscopic techniques that may yield micronutrient
insights.

Categorized under emission spectroscopy, fluorescence spectroscopy has been demonstrated for the measurement
of primarily B vitamins in non-biological samples such as multivitamins and energy drinks, although vitamin B1
was measured in urine [210]. The B vitamins continue to get attention in near infrared (NIR) spectrophotometry
(750-2500 nm wavelength), where their measurement has been reported as well [210]. One review recognized
the ability of vibrational spectroscopy, which includes infrared (IR) and raman spectroscopy, to act as a tool for
biofluid analysis in precision nutrition [38] (Fig. 3). However, like other studies in nutrition, this review had few
considerations for micronutrients and the approaches covered were largely concerned with general nutritional
status or macronutrients. Tsiminis et al. [187] noted the potential of raman spectroscopy for the measurement
vitamin B12, though this has yet to be realized at in-body concentrations due to the low sensitivity of raman
spectroscopy. In biosamples, spectrophotometry was applied to measure vitamin C [74]. Spectroscopic skin
tests and raman spectroscopy have also been noted as promising techniques in the assessment of provitamin
A carotenoid status in the body [74]. Measurement of several water-soluble vitamins in synthetic mixtures
and dosage forms was achieved with derivative and multivariate spectrophotometry [210]. Derivatives of UV
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Fig. 3. Vibrational spectroscopy targeted at saliva, tissue, skin, and urine have current applications in precision nutrition,
while stools hold potential nutritional insights (indicated by question marks). Used with permission from Dongdong and
Cozzolino [38]

spectrophotometry (185-400 nm wavelength) have also been particularly useful in the analysis of caffeine and B
vitamins in energy drinks. The open-source Lumos platform also enables on-body spectroscopy [201].

3.4.1 Accessible Spectroscopy. Significant progress has been made to make spectrometry as a study more
accessible and compact [33]. Major subfields of spectrometry (visible, Raman, mid-IR, NIR, MS, and hyperspectral
imaging) have seen the development of portable or handheld devices. In some cases, such as visible, near-IR, and
hyperspectral imaging, these can even be smartphone-based. This paves the way for more accessible, noninvasive
techniques. A summary of spectroscopy-based methods is found in Table 8.

There was one application of spectrometry for vitamin D (calcidiol) measurement in our interest area of
accessible approaches [197]. With human serum samples in mind, their sensor used surface plasmon resonance
(SPR) together with smartphone-based spectrophotometry to assess vitamin D content. The general design of the
sensor involved an optical waveguide to direct light from the smartphone flash through one or more SPR sensors,
a diffraction grating, and finally into the smartphone camera where a spectra of pixel intensities can be extracted.
The device was evaluated on spiked serum samples. As the concentration decreased, the center of mass of the
spectra shifted right, allowing for the detection of these concentrations. The paper claims a comparable LoD to
optimal reference standard methods of LC-MS, but no quantitative estimates of vitamin D concentration, sample
size, or statistical analysis of the results are provided.

Some benchtop approaches to spectroscopic analysis of biofluids for micronutrient assessment have also been
demonstrated [20, 128, 145, 146]. Peterson et al. [146] presented a photonic crystal-based sensor for ferritin
assessment. Photonic crystals were designed to accumulate a target biomolecule on their surface, which changes
their reflected peak wavelength value (PWV) under a spectrophotometer. The authors subjected their sensor
to robust evaluation, utilizing human liver ferritin, commercial serum controls (Liquichek), and three different
ELISA tests. The developed sensor held up against the ELISA tests, but with a higher LoD (26 `g/L) that did not
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cover the lower end of iron deficiency. Bias by Bland-Altman analysis was similar to that of the BioVendor ELISA,
and recovery from known serum controls was greater than 94%.

Motivated by a specificity issue in the preceding sensor, Peterson et al. [145] employed iron-oxide nanoparticles
to minimize non-specific signals. This time, the goal was soluble transferrin receptor (sTfR) quantification from
serum, an indicator of iron supply to tissues [4]. It should be noted that sTfR is not influenced by inflammation
to the same extent as serum ferritin, and is therefore a potentially more ideal biomarker. However, sTfR is
more expensive to assay. For this experiment, biomolecule interaction on the assay was quantified using the
Biomolecular Interaction Detection system from SRU Biosystems Inc [145]. The authors compared results from
their assay on Liquichek control sera to ELISA and the previously developed photonic crystal assay. The authors
claimed that the bias of the assay was not “statistically different from the reference ELISA tests” [145].

Moving from iron to vitamin C, Bi et al. [20] demonstrated the immobilization of ascorbate oxidase in a
microfluidic channel, enabling the quantification of vitamin C with UV-visible spectroscopy. During analysis,
the biosample was diluted in phosphate buffered saline (PBS) and “pumped through the microfluidic channel”.
A serum sample was obtained by a single healthy, female volunteer for evaluation. The sample was pretreated
to remove proteins , and a few drops were added to the sensor. Even with extensive pretreatment, there was
evidence of interference at 280 nm, close to the analysis peak of vitamin C at 266 nm. No optimal reference
standard measurement was provided for comparison. Mughal et al. [128] mixed different electrolytic solutions
with plasma and serum, and when paired with a novel, reduced graphene oxide, vitamins K1, K2, B6, and D3
could be individually identified using UV-visible spectrophotometry. This method did not compare the measured
levels from 5 subjects with clinical values.

3.4.2 Comparison. A wide range of spectroscopic methods have been applied for the quantification of different
micronutrients, making it difficult to compare each approach. Iron assessment appears to be feasible in serum,
but further development would be useful to increase the accessibility of a spectroscopic approach that targets
this nutrient. Furthermore, clinical research could consider alternative biosamples for iron, to increase the
noninvasiveness of spectroscopic techniques. Studies using spectrophotometric methods have yet to be thoroughly
validated so as to indicate the utility of spectrophotometry over any alternative method.

3.5 Biofluid Analytic Methods
AI and ML can be used to detect micronutrient levels in individuals. A common approach to estimating nutritional
status is by making predictions from pre-existing biofluid analysis or demographic data using ML. Such methods
have been applied to derive micronutrient-specific insights [86, 100, 114, 144, 150, 186]. A summary of biofluid
analytic methods can be found in Table 9, where we observe a common trend of utilizing classical machine
learning algorithms (logistic regression, gradient boost, naive bayes, random forest) for predictive modeling.

3.5.1 Single Micronutrient Malnutrition Detection. Some studies focus on detecting deficiency of a specific
micronutrient. Two such papers investigate iron status [115, 150], while a third examines vitamin D [144]. Luo
et al. [115] used hospital outpatient data collected over three months to predict whether a patient had normal or
abnormal ferritin (iron) status using logistic regression. The collected data included age, sex, ferritin test results
(used as markers), and other ‘predictor’ tests that were conducted in the main hospital lab only (n=5128, sex
breakdown not reported). These authors considered the broader clinical usefulness of ML-powered insights,
claiming that “predicted ferritin results may sometimes better reflect underlying iron status than measured
ferritin” [115]. This conclusion was based on dual independent review by 2 pathologists on 26 selected cases
where measured and predicted ferritin were ‘highly discrepant’. They propose that predicted levels could be used
to flag lab-measured ferritin for further review. Pullakhandam and McRoy [150] use gradient boost on NHANES
complete blood count (CBC) data to classify and explain IDA (n=19995, sex breakdown not reported). They found
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Table 8. Spectroscopic Methods

Method Platform Targets Analytes Evaluation Control Results Notes Source

SPR-coupled
spectrophotome-
try

Smartphone-
based

Vitamin D
(calcidiol)

Serum Spiked from
human subjects

LC-MS Claim comparable
LoD to control,
spectra shifted right
with decreasing
concentration

No quantitative
vitamin D
estimates or
statistical
analysis

[197]

Photonic crystal Benchtop Iron
(ferritin)

Serum Liquichek
control sera

Known ferritin
concentrations
and multiple
ELISA tests

Comparible recovery
(>94%) and bias
(by Bland-Altman
analysis) to best-
performing ELISA

LOD higher than
cutoff for anemia,
lower end of
deficiency

[146]

Sandwich
iron-oxide
nanoparticle
immunoassay

Portable Iron (STfR) Serum Liquichek
control sera

ELISA SD of 0.45 mcg/mL vs
ELISA

[145]

UV-vis spec-
trophotometry

Benchtop Vitamin C
(ascorbic
acid)

Serum Human subjects None Within
phsyiologically-
relevant concentra-
tions

Strong focus on
the effectiveness
of the immobiliza-
tion technique,
not vitamin C
measurement

[20]

UV-vis spec-
trophotometry

Benchtop Vitamins
K1
(phylloqui-
none), K2
(menaquinone),
B6, D3
(cholecalcif-
erol)

Serum/plasma Human subjects Various sens-
ing techniques
(SWV, HPLC-
MS/MS (ESI),
SWAdSV,
Thermal wave
transport
analysis, DP
AdSV, SWASV,
DPV, Elec-
trochemical,
Colorimetric
aptasensor)

Limits of detection of
vitamins K1, K2, B6,
and D3 are 0.075, 0.1,
0.12, and 0.15 ng/mL,
respectively. Limits
of quantification are
0.29, 0.3, 0.38, and 0.48
ng/mL for vitamins
K1, K2, B6, and D3,
respectively.

Clinical gold-
standard biomark-
ers are not used
for all vitamins
(except for K,
where LoD is
too high for
deficiency); used
bismuth nanopar-
ticle embedded
polypyrrole
nanocomposite
(rGO/pPy/Bi
NC) as an optical
sensing material

[128]

that the most critical features for IDA are low levels of hemoglobin, higher age, and a higher red blood cell
distribution width.

For the prediction of vitamin D deficiency, Patino-Alonso et al. [144] applied ML (logistic regression, naive
bayes, and random forest) to anthropomorphic data of older Europeans (35-75 y/o; 50/50 males/females) given
anthropomorphic features. A total of 501 participants contributed their “waist circumference (WC), body mass
index (BMI), waist-to-height ratio (WHtR), body roundness index (BRI), visceral adiposity index (VAI), and
the Clinical University of Navarra body adiposity estimator (CUN-BAE) for body fat percentage”. Vitamin D
as 25(OH)D was measured by immunoassay and the threshold of deficiency was set to be 20 ng/mL (34.7%
prevalence). We note that this threshold more closely aligns with insufficiency (Table 1). Logistic regression
analysis found that the most significant features differed by sex. All but CUN-BAE were associated with vitamin
D deficiency in males, while only CUN-BAE was associated in females. ML models for deficiency prediction were
trained on each feature individually. The authors discovered that Naive Bayes was the top performer by AUC for
WC, BMI, WHtR, and BRI but was bested by logistic regression for VAI and CUN-BAE.

3.5.2 Multiple Micronutrient Detection. Since it is rare for micronutrient imbalance to occur in isolation, re-
searchers have studied the ability to predict malnutrition of multiple micronutrients [100, 186]. Truijen et al.
[186] focus on micronutrient malnutrition in older populations, citing how malnutrition in older adults is often
diagnosed too late despite the existence of screening methods. The goal of the study was to use logistic regression
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to classify each sample as having either no micronutrient deficiency or one or more deficiencies among vitamins
C, B6, B12, selenium, and zinc, confirmed by blood tests. These particular micronutrients were selected because
they interact less with each other (we add that B-vitamins do interact; Table 13), were among the most prevalent
deficiencies, had clinically relevant cutoff points for deficiency. Logistic regression was applied to routine bio-
chemical and diagnostic data from 9 years of United Kingdom NDNS for ages ≥50 (n=1518, 57.2% female). This
dataset suffered from ethnic disparities, with the authors noting that ≥95% of NDNS participants were white.

Kurstjens et al. [100] aimed to develop a random forest algorithm to assess risk of low body iron storage
(ferritin plasma levels) in anemic primary care patients using CBC and CRP test results from 3 medical laboratories
(n=2,935, ∼1,493 female. Two algorithms were developed, each based on laboratory ferritin results from different
chemistry analyzers (from Siemens and Roche). Interestingly, the two most important features were both derived
from CBC test results (Table 9). The authors took an important step to consider how such a model could assist a
clinician by asking 4 professionals to indicate whether a patient had low ferritin based on CBC and CRP, with and
without algorithm results. The found that the algorithm alone was more accurate than both scenarios. Detection
of low vitamin B12 and B9 levels were also considered, but this yielded poor results with AUCs of 0.52 and 0.57
respectively.

3.5.3 Adjusting Biomarkers for Inflammation. When conducting biochemical analysis for micronutrient assess-
ment, a common issue is the impact of inflammation on biomarker measurement. One R package aims to solve this
problem and improve interpretability by adjusting biomarkers of micronutrients in the context of inflammation
[114]. The package implements inflammation adjustment for retinol-binding protein, serum retinol, serum ferritin,
sTfR, and serum zinc, using acid glycoprotein (AGP) and/or CRP as biomarkers for inflammation. The authors
have also published a paper describing a procedure on when and how to apply their technique [114].

Table 9. Analytic Methods

Method Targets Data Important Features Ground Truth Results Notes Source

Logistic
regression

Normal or
abnormal
ferritin

Hospital outpatient
data

”total iron-binding
capacity, mean cell
hemoglobin, and
mean cell hemoglobin
concentration” from
Luo et al. [115]

Ferritin test
results

AUC of 0.97 Predictions could
be used to flag lab
ferritin for review

[115]

Gradient boost IDA US NHANES (CBC
and serum ferritin)
dataset and Kenyan
nutrition dataset (for
evaluation)

Low blood level of
hemoglobin, higher
age, and higher red
blood cell distribution
width

Serum ferritin Precision AUC of 0.87
(training); recall of
0.98 (training) and
0.89 (evaluation)

Heavy class imbal-
ance (4.9% IDA vs.
95.1% non-IDA)

[150]

Logistic
regression,
naive bayes,
and random
forest

Vitamin D
deficiency

Anthropormorphic
measurements of
older Europeans

CUN-BAE for females,
all others for males

Blood 25(OH)D
by immunoassay

Max AUC of ∼0.53
for all features; LR
best for VAI and
CUN-BAE, NB for all
others

Did not assess
predictive ability of
multiple features at
once

[144]

Logistic
regression

Presence of
micronutrient
deficiency

UK NDNS, ages ≥50 Low protein, en-
ergy intake, TC,
hemoglobin, HbA1c,
ferritin, vitamin D
and high CRP

Blood test results
for Vitamins C,
B6, B12, selenium,
and zinc

AUC of 0.79 ≥95% of NDNS
participants were
white

[186]

Random forest Classify
low body
iron storage
(plasma
ferritin)

CBC and CRP tests in
anemic primary care
patients

Mean corpuscular
hemoglobin and mean
corpuscular volume

Ferritin results
from two labora-
tory chemistry
analyzers (two
separate models)

AUC of 0.9 and
0.92 for each model,
models were more
accurate than pro-
fessionals with and
without access to
results

Attempted Vitamin
B12 and B9 deficiency
detection with poor
results (AUCs of 0.52
and 0.57)

[100]
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3.5.4 Comparison. Luo et al. [115] and Kurstjens et al. [100] both utilize data obtained from patients during the
course of their health care, whereas other sources of data came from surveys (e.g. the US NHANES). Collecting
data during health care can result in a large amount of data to mine for micronutritonal insights without needing
to rely on national surveys (which may not contain a wide variety of features) or conducting an independent
assessment of a population. The prediction of iron (as ferritin) appears to be more successful than the prediction
of other biomarkers. This is likely due to iron’s large influence on hemoglobin, which was an important feature
for all ML models that were trained to predict ferritin status [100, 115, 150].

3.6 Biofluid Analysis Limitations
The largest general limitation of existing biofluid-based assessments is that methods effectively indicating in-body
status of a micronutrient often utilize an invasively-collected biosample (i.e. blood) for analysis. While noninvasive
biosamples such as sweat and saliva were applied, the clinical research on micronutrients suggests that these
samples may not accurately reflect micronutrient status compared to blood. As such, validation studies are
required. We also observe that biofluid-based assessments are more specialized in nature. Frequently, a bespoke
assay, device, or sensor is implemented for the assessment of only a single micronutrient. This is understandable
considering the inherent difficulties in detecting and quantifying micronutrients that have unique metabolic
pathways, are present in such limited quantities, and play different roles in bodily function. Furthermore, there
is also a common need for a specialized reagent, buffer, or electrolytic solution to enable the analysis of each
micronutrient (especially for assays and electrochemical methods). It is for this reason that multiplexed or
simultaneous detection of multiple micronutrients is limited, despite their potential to enable more holistic status
monitoring. However, we acknowledge that combining several specialized assays and unique sensor designs adds
complexity to the measurement process, creating barriers to commercialization as well as widespread adoption.

On the topic of commercialization, we posit that the lack of commercial, multiplexed, or PoC technologies for
micronutrient assessment is a result of both the ingrained reliance on laboratory blood testing within health care
institutions as well as the expensive and thorough human subjects evaluations necessary to bring an effective
assessment technique to market. We find that current methods do not consistently test the clinical biomarker for a
given micronutrient (e.g. measuring vitamin D via calciol instead of the optimal reference standard calcidiol a.k.a.
25(OH)D). Even when the proper biomarker is examined, the device itself may be evaluated on concentration
intervals that are not pertinent to the clinical spectrum of deficiency to excess (e.g. the linear range of a sensor
may be able to indicate sufficient status, but the LoD is too high to infer deficiency). Again, we recognize that some
methods are specifically designed to accurately detect a deficient status in a resource-constrained environment,
or assess micronutrients where excess does not pose a significant health risk. In these cases, a lack of sensitivity
in the upper spectrum is less of an issue. Some research fails to include a clinically relevant biochemical test
(e.g. ELISA or HPLC) for their target micronutrient as a scientific control. By contrast, a non-clinically relevant
biochemical test either does not follow best practices in clinical nutrition, targets an alternative biomarker, or
uses an alternative process from what is typically considered acceptable in modern clinical practice. Such a
non-clinically relevant test can also simply rely upon supplementation rather than any substantive evaluation of
micronutrient status (see below). Each of these oversights actively limits the clinical value, and therefore the
real-world utility, of the proposed solution.

The lack of a clinically relevant biochemical test is confounded by the prevalence of supplementation-based
experiments, where an assessment is conducted on a patient before, during, and/or after intake of the target
micronutrient. The prescribed intake may be as specific as a supplement pill or as general as a food that is
known to contain high amounts of a micronutrient. Because of individual variance in the absorption of different
micronutrients, it is difficult to know the true impact of micronutrient intake, and therefore the practical accuracy
of a status assessment, without also conducting a relevant biochemical test. Lastly, the study designs themselves
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often feature low sample sizes (1-5 participants) that make it difficult to assess the analytical validity of each
method. We recognize that design-oriented research faces a larger hurdle when attempting to conduct human-
subjects experiments that are clinical in nature, and several studies echo this point. Biofluid analytic methods
have sample sizes that are (necessarily) much larger, but share issues related to the equitable representation of
demographic groups within their sample. Similar to the impact of omitting a relevant biochemical test, we argue
that an emphasis on new technologies over more rigorous and larger-scale validation studies makes it difficult to
judge the true effectiveness of a novel assessment method.

Moving to the specific approaches, we find that clinical biochemical analysis is invasive, expensive to analyze,
and the methods of analysis and thresholds for imbalance are debated [154]. Additionally, biomarkers are generally
sensitive but not specific, and their analysis requires considering an extensive list of factors that alter the ability
of a marker to indicate nutrient status (such as inflammation, disease, or medications) [42].

Although there are several wearable, smartphone, and point of care assay devices, their accessibility in some
cases is limited by specialized assay chips and most require invasive biofluids for analysis. Saliva and sweat
have been proposed as alternatives to blood, but their ability to reflect in-body status of a given micronutrient is
often unknown, debated, or disproved (Section 2.2). One survey offers additional insight into the issues faced
by wearable sweat sensors: low sweat rates, sample evaporation, skin contamination impacting sweat content,
and the difficulty to access fresh sweat [15]. Assays and electrochemical devices also suffer from being more
specialized in nature (complicating manufacture and integration) and not utilizing more ubiquitous methods of
health monitoring such as smartphones and smartwatches.

The field of spectroscopy shows great potential (especially IR and Raman), though we argue that there is not
yet enough accessible, micronutrient-specific research that provides insights into in-body status. Most work
in this area required benchtop analyzers instead of on-body approaches. With the latter however, one must
take great care not to harm a user with the spectroscopic approach. UV spectroscopy in particular requires the
application of UV light, which is broken into three types depending on its wavelength. Exposure to UVA (400 -
320 nm) and UVB (320 - 280 nm) radiation can cause damage to DNA and result in cancer, because of how this
energy penetrates the skin [39]. UVC radiation from sunlight (280 - 100 nm) does not possess these same dangers,
especially because it is absorbed by the skin, but direct exposure to artificial UVC radiation can still cause burns
on the skin and eyes [191]. The exact amount of UV radiation which is considered harmful varies with the area of
exposure, amount of melanin content in the skin, and more, so we direct the reader to Table 2 in D’Orazio et al.
[39] for more information.

Prediction from clinical health data is able to combine and analyze a large breadth of features, but this data
is often insufficient for micronutrition. The lack of micronutrition data availability poses a grand limitation for
the ability to make strides in analytic techniques with AI/ML. As a result, Brown et al. [22] and others urge for
more micronutrition data. Additionally, the insights provided by these solutions are limited to a small set of
micronutrients and/or indicate only a binary deficiency status, rather than a continuous one.

4 PHYSIOLOGICAL SENSING FOR MICRONUTRIENT ASSESSMENT
Physiological assessment is as important as biofluid analysis, and some argue they should be considered together.
Many physiological symptoms of micronutrient deficiency (Tables 16 to 18) only manifest in severe cases, but the
assessment of physiological symptoms remains a critical step in nutritional practice for two central reasons. First,
it is useful when estimating the burden of micronutrient malnutrition in a population that is difficult to assess
via biofluid methods. Second, physiological assessments provide insights into patient health that are unique
and complementary to quantitative, biofluid-based assessments. Though it is valuable, physiological analysis
receives significantly less attention in emerging micronutrition research. A comprehensive overview of physical
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Fig. 4. As light is applied to the skin, it is absorbed and reflected in different ways depending on its wavelength. Impor-
tantly, skin melanin content can impact the absorbance of visible light. For more information, please refer to [6]. Used with
permission from McDuff [120].

examination in clinical nutrition is out of scope for this review, so we direct the reader to Reber et al. [154] and
Hummell and Cummings [73] for more information.

Physiological sensing enables automatic detection of symptoms linked to micronutrient deficiency (Section 2.3
and Tables 13 to 15), supporting NFPEs. Incorporating metrics like heart rate, activity, sleep, and temperature
can enhance personalization and reveal health trends over time. King et al. [91] outline key criteria for effective
wearable monitoring: noninvasive, user-friendly, reliable, and informative. Witt et al. [205] shows how raw
data from sensors like PPG, ECG, accelerometers, EDA, and temperature can offer physiological insights about
human physiology relevant to micronutrient imbalance. Yokus and Daniele [208] also provide valuable design
considerations for future wearable micronutrient assessment tools. The remainder of this section highlights
innovative methods of optical sensors in assessing physiological signals. While not explicitly wearables-focused,
Yokus and Daniele [208] provide some useful considerations for wearable devices that should be applied to future
micronutrient assessing devices.

4.1 Applications of Optical Sensors in Assessing Physiological Signals
McDuff [120] reviews how camera sensors can be used for noninvasive physiological measurement, which can
allow for nutritional insights. The analysis of motion artifacts can reveal minute subtleties in body motion over
time that are caused by various physiological mechanisms (e.g. breathing). Also, camera sensors can measure the
intensity and wavelength of light absorbed and reflected by our bodies, especially skin (Fig. 4). Differences in
measured light over time can be observed and associated with physiological signals (e.g. heartbeat) and status
(e.g. low blood oxygen saturation). However, it is important to note that skin melanin content can impact how
light is absorbed and reflected [6]. A failure to properly account for these differences can (and has) resulted in
racial biases (for example, pulse oximetry [172] and wrist-worn heart rate sensors [96]).

The type of optical sensor has a large impact on the signals that can be derived from it [120]. RGB cameras are
found in most smartphones and, therefore, are the most prevalent. These operate largely in the visible spectrum
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of light (400 to 700 nm wavelengths), but they can often detect some light in the NIR range. NIR cameras are able
to detect light in the 700 to 1000 nm range, and thermal cameras can go fully into the infrared spectrum of 2000
to 14000 nm. Thermal cameras, as their name suggest, can provide unique information over other sensors such
as body temperature and sweat gland activation. However, this comes with a higher cost and lower resolution.
Finally, multi and hyper-spectral cameras allow for the measurement of multiple wavelengths of light at once.
This can also be achieved by combining signals from multiple sensors.

Cameras have been extensively applied to the measurement of physiological vital signs [60, 108, 120, 121,
129, 193]. One survey describes 5 physiological vital signs where optical sensor measurements been applied:
pulmonary activity, EDA, blood oxygen saturation, glucose status, and cardiac activity [120]. PPG signal capture
has been achieved with RGB cameras [60, 193]. NIR cameras are also useful for PPG in use cases like sleep
monitoring that require environments with low visible light [120]. When measuring blood oxygen saturation,
multi or hyper-spectral cameras are preferred. Measuring multiple wavelengths of light at once benefits the
simultaneous measurement of oxy and deoxy-hemoglobin, and therefore blood oxygen saturation. Recently,
Sharma et al. [169] proposed a smartphone-based hyperspectral imaging platform and used it to identify organic
fruits. Optical sensor-based techniques could be use to detect and investigate other physiological symptoms in
the fingertip [65, 190, 198], mouth [203, 207], and eyes [84, 99, 142, 181].

Optical sensors have been successfully applied to noninvasively assess amajor protein, hemoglobin. Hemoglobin
allows for oxygen transport in red blood cells and is produced by iron, vitamin B9, and vitamin B12 [177]. A
deficiency in these micronutrients can result in lowered hemoglobin, which manifests as anemia. A review of the
state of the art emphasizes the need for an affordable and accessible method of hemoglobin measurement, which
can be realized with commodity smartphone cameras [64]. Various works have used smartphone cameras as a
way to estimate hemoglobin status noninvasively [64, 65, 181, 198]. They report that PPG signals derived from
the fingertip and conjunctiva (skin behind the lower eyelids) under NIR light in 1070 and 850 nm wavelengths
contain the most critical features to hemoglobin estimation. Wang et al. [198] had users place their fingertip
directly onto a smartphone camera while it recorded video to determine hemoglobin status. Analysis found that
the blue spectra of plasma was the most important for protein composition, and therefore hemoglobin estimation.
Classifiers were built to identify hemoglobin status as “normal” or “anemic” in the context of demographic
averages. Optimal reference standard blood hemoglobin measurements (Masimo Pronto optical device) were used
as ground-truth. Because camera-based assessment can exhibit bias with differences in skin color (see above), the
authors carefully considered and reported the demographics of their study participants in addition to controlling
for light absorption by skin tissue during experiments. A later paper devised a similar system, applying artificial
neural networks (ANNs) and using only the smartphone’s flash as a light source [65]. By combining frames
within the videos, the researchers were able to identify regions with high variation in predicted levels.

The use of the conjunctiva as an ROI is gaining popularity due to the fact that it, like the fingernail bed and
palmar creases, has no melanin and is devoid of “epidermis, dermis or subcutaneous fat which could impede
the transmission of light” to deeper vascular layers [181]. This means the blood vessels are easier to analyze,
and there may be less bias due to skin color. These properties have been leveraged by Suner et al. [181] to
estimate hemoglobin concentration and screen for anemia using smartphone images of the conjunctiva. Spectral
super-resolution (SSR) has been introduced to measure blood hemoglobin levels [142]. This method is based on
a wealth of existing research reconstructing hyperspectral images from RGB signals. Statistical learning was
applied to approximate a hyperspectral image of the conjunctiva from a simple smartphone camera image. Using
the hyperspectral data, the hemoglobin content in blood can be computed more effectively than the RGB data
alone. However, no analysis of skin color differences was conducted.

Techniques that use optical sensors benefit from the accessibility provided by the use of smartphones but their
nutritional applications thus far are limited to macronutrients. They are also more susceptible to demographic
biases in hardware, software, and datasets [120].
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5 IMPLICATIONS FOR FUTURE MICRONUTRIENT STATUS ASSESSMENT METHODS
The state of the art reveals limitations that hinder the assessment of micronutrient status in individuals in the
following ways: (1) the lack of clinical relevance in innovative approaches, (2) the absence of comprehensive
assessment techniques, and (3) the deficiency of accessible and noninvasive methods. Future work could aim to
address these issues while considering real-world integration into clinical and public health settings. Here, the
requirements for medical diagnostic tests set by frameworks like REASSURED [101] are useful as they intersect
with and expand beyond accessibility and non-invasiveness. REASSURED stands for Real-time connectivity,
Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly (including cultural acceptability),
Rapid and robust, Equipment-free/Environmentally friendly, and Deliverable (i.e. accessible) to end-users [101].
First we briefly discuss how emerging methods align with these criteria, summarized in Table 10, then we
discuss opportunities to address the aforementioned limitations, summarized in Table 11. We note that definitive
conclusions remain challenging due to the early stage of many technologies.

5.1 Evaluating Emerging Methods
Assay-based methods like lateral flow immunoassays offer high sensitivity and specificity due to their targeted
biomarker reactions but face issues with batch variability, limited range sensitivity, and environmental instability.
Their performance can vary across sample types and demographics. While assay-based methods are familiar to
clinicians, they may burden patients due to reliance on blood or urine samples.

Electrochemical methods are promising for PoC use due to speed and simplicity but can be affected by biofluid
properties, electrode placement, and demographic differences. They often rely on less validated biosamples,
limiting clinical adoption, and may require benchtop equipment, limiting practical deployment in limited resource
settings.

Spectroscopy-based methods, such as LC-MS/MS, are the clinical optimal reference standard due to their high
reproducibility, but they require complex lab equipment and protocols, limiting field use. Emerging on-body
spectroscopic approaches could improve accessibility and cultural acceptability, especially when integrated with
smartphones. However, research on noninvasive, accessible spectroscopy for in-body micronutrient assessment
remains inadequate.

Biofluid analytic methods, including those applying AI/ML to physiological or multi-modal sensor data,
may offer the highest patient acceptability by avoiding additional testing. While potentially fast and accurate,
their effectiveness depends heavily on training data quality. Therefore, these approaches face challenges in
reproducibility, bias, and scalability, especially across diverse and/or underserved populations. Collecting equitable,
high-quality data for training is resource-intensive, and it is likely that effective models will have to be highly
specific to the communities they serve, as opposed to being fully generalizable to micronutrient malnutrition
globally.

Although emerging methods for accessible and noninvasive micronutrient status assessment have promising
capabilities within this set of requirements, few of these approaches are currently standardized and ready for
reproducible deployment across diverse geographic settings and clinical populations. The actionable future
opportunities we propose in Table 11 aim to transition micronutrient status assessment from the laboratory
to everyday use, enabling valuable micronutritional insights in a manner that is both easily accessible and
noninvasive.

5.2 Future Opportunities to Address Limitations of Micronutrient Assessment
5.2.1 Clinically Relevant Innovations. We find that current innovative approaches to biofluid analysis for micronu-
trient status assessment lack clinical relevance (Sections 3.2 to 3.5). To overcome this limitation, future research
could shift focus toward clinical relevance as a primary goal. This requires an interdisciplinary approach and
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Table 10. Whether Methods Address Proposed and REASSURED [101] Criteria.

Optimal
Refer-
ence

Standard

Assays Electrochemical Spectro-
scopic

Biofluid
Analysis

Criteria - Sweat
Col-

orimetry

Multi-
plexed
Sweat
Sensors

Smartphone-
based

Com-
mercial

Voltam-
metry

Amper-
ometry

Impedance - Sin-
gle

Mul-
tiple

Clinical
relevance

X - - X X - - - X X X

Comprehen-
sive assess-
ment

- - X - - - - - - - X

Noninvasive - X X - - X X X - X X

Accessible - X X X - - - - - - -

Reproducibility X - - - X - - - X - -

Robustness - - - - - - - - - X X

REASSURED

Real-time
connectivity

- - X X X - - - - - -

Ease of speci-
men collection

- X X - - - - - - - -

Affordable - X X X - X X X - - -

Sensitive X - - X X - - - X - -

Specific X - - X X - - - X - -

User-friendly - X X - - - - - - X X

Rapid - X X X X X X X X X X

Equipment-
free/ Envi-
ronmentally
friendly

- X X - - - - - - - -

Deliverable - X X X - - - - - - -

recognition that technology is most effective when it complements clinical expertise, especially as micronutrition
is inherently a clinical field where all solutions must be grounded in practical applications. Clinical, practical
grounding can also be done by benchmarking new approaches against established optimal reference standards,
detailed in Table 1. Comparative validation is essential to demonstrate a novel method’s relevance and its potential
as a viable substitute for the clinical optimal reference standard. We note that appropriate use of ELISA tests are
sufficient in most cases.

We also find it is important for researchers to prioritize clinically relevant biofluids and ensure measurements
reflect meaningful biomarker levels. For instance, reviewed papers claim to leverage sweat, yet sweat is an
unreliable indicator of micronutrient status [12, 13]. Clinical relevance improves when methods align with the
biomarkers used across the full spectrum of deficiency to excess. However, future research can also validate
which biosamples and biomarkers may be suitable replacements for the optimal reference standard for specific
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Table 11. Limitations of Existing Micronutrient Status Assessment Methods and Opportunities to Address Them.

Limitation Opportunity

Limited clinical relevance - Compare new approaches to the clinical optimal reference

- Evaluate assessment performance in routinely-assessed pa-
tients

- Adopt an interdisciplinary mindset when innovating

- Understand and integrate clinically relevant biofluid samples

- Measure clinically proven levels of circulating micronutrients

Lack of holistic and comprehensive approaches - Employ precision nutrition by considering several types of data

- Utilize multi-modal solutions

- Gather many micronutrient statuses simultaneously

- Collect data from diverse populations and make data available

Highly invasive and inaccessible - Utilize commodity devices (smartphones, smartwatches) to
collect data

- Make designs open-source

- Render insights actionable to non-experts

- Bypass the need for biofluid samples by using wearables

- Leverage less invasive biofluids such as urine

micronutrients, and in specific usage contexts. Since clinical validation can be challenging (Section 3.1), studies
could apply new assessmentmethods in patient populations alreadymonitored by clinicians, offering opportunities
for collaboration and access to clinical reference data for validation. Targeting at-risk groups, like bariatric surgery
candidates or individuals with diabetes, is especially useful as they are routinely assessed for nutritional status.

5.2.2 Comprehensive Approaches through Individualized and Multi-Modal Solutions. Micronutrition is complex
and requires a holistic, individualized approach (Section 1). Advancing assessment technologies calls for precision
nutrition and multi-modal sensing that account for differences in diet, metabolism, and lifestyle [94, 138, 175, 213].
While current methods often analyze biofluids (Section 3) or physiology (Section 4) separately, combining them
with clinical data, like treatment history and anthropomorphic measurements, can uncover patterns and offer
a more complete view of micronutritional status. Multi-modal sensing also enables simultaneous analysis of
multiple micronutrients, essential due to their complex interactions [11]. (Tables 13, 14, 15). When single-device
measurement is not feasible, future solutions could integrate multiple tools into a unified system.

We support calls for more micronutrition data [22], as access to individual nutrition profiles can accelerate
progress toward precision assessment (Section 3.5). Innovative assessment devices and health sensors could
be used in clinical studies to collect personalized micronutrient data over time. Valuable information includes
demographics, clinical history, nutritional assessments, symptom images, biochemical results, and wearable
data. Greater data availability would support deeper clinical investigations and aid early detection of imbalances.
Disease etiology lies at the intersection of comprehensive clinical assessment, preventative care, and clinical
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relevance. Etiology stresses the multifactorial (and deeply individual, social, and cultural) nature of disease
progression [204]. Comprehensive assessments, and data thereof, can contribute to the etiological understanding
of micronutrient malnutrition and ultimately drive precise prevention strategies.

AI and ML tools can help integrate these factors, uncovering latent patterns across a vast quantity and variety
of micronutrition data [34]. We have discussed how micronutritional assessments are made more powerful
when they are conducted and compared repeatedly over time. Accessible, multi-modal sensing would enable
routine collection of health data relevant to micronutritional status, which can be combined and compared in
real time, and en masse, by ML models. However, the computational and environmental costs of AI and ML
models, especially large-scale generative AI models, must also be considered. It will also be essential to ensure
demographic and cultural diversity to produce relevant and equitable models. Scalable and sustainable data
collection through accessible PoC devices could be essential to achieving this.

5.2.3 Accessible and Noninvasive Point-of-Care Devices. This work highlights the critical need for accessible
and noninvasive methods to assess micronutrient status. Such methods can generate valuable data though PoC
assessments [94] and therefore improve the overall understanding of micronutrition. Current technologies fall
short in accessibility, but potential solutions lie in leveraging commodity hardware, open-sourcing designs,
prioritizing ease of use for non-experts, and utilizing less invasive biosamples. Smartphones and smartwatches,
with built-in sensors, offer promising platforms for physiological insights. Their capabilities can be further
expanded with features or accessories like electrochemical sensor chips or microfluidic pumps for biofluid
analysis. As a result, multi-modal solutions with broad sensing and analysis capabilities will become more broadly
available and low-cost.

Methods could be built considering some existing wearable devices. The Empatica E4 and Polar H10 offer
high-fidelity HRV and autonomic data, which is associated vitamin B12 and iron status (Section 2.3) [57, 161].
Oura Ring, WHOOP, Fitbit, and Garmin devices track sleep, heart rate, and recovery metrics, which have been
linked to nutrient-related fatigue and dysfunction [17, 68, 97, 123]. Additionally, Dexcom continuous glucose
monitors, while focused on glucose, demonstrate the clinical viability of wearable biochemical sensing and may
inform future designs for micronutrient monitoring [52]. While these tools vary in accuracy, especially across
sensor types and populations, they highlight growing opportunities for accessible physiological monitoring
relevant to micronutrition. Minimally invasive alternatives, such as urine testing (Section 2.2) instead of serum
or plasma, can enhance accessibility. Even more promising are wearable, on-body sensing devices which use
spectroscopy and ML to monitor micronutrients continuously without the need for biosamples [33, 124, 125, 201].
When care is taken to design innovative on-body, PoC assessments that are open-source and easy to use by
laypeople (in addition to being accessible and noninvasive), comprehensive micronutrient status assessment can
become viable for resource limited communities as well as individuals at home.

6 CONCLUSION
This article provides a comprehensive review of accessible and noninvasive methods for assessing in-body
micronutrient status, focusing on biofluids (Section 3) and physiological (Section 4) approaches. We evlauate
current techniques such as assays, electrochemistry, spectroscopy, optical sensors, and AI/ML for performance
and clinical relevance. Key contributions include: (1) background on micronutrients for non-clinical audiences,
(2) a synthesis of biofluid- and physiology-based methods, (3) future directions for noninvasive and accessible
assessment, and (4) a unique focus on clinical applicability. Several summary tables provide an intuitive reference
throughout.

This review synthesizes micronutrient status assessment methods based on biofluid and physiological analyses.
Biofluid approaches benefit from established biomarkers but often rely on blood samples and lack clinical valida-
tion. Physiological assessments face challenges like weak symptom associations, self-report bias, and limited
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micronutrient-specific research. From a clinical perspective, no current technology holistically integrates both
types of analysis, despite this being standard in practice. Most research focuses on assessing a single micronutri-
ent using either biofluid or physiological data alone. This review outlines three key opportunities to advance
micronutrient status assessment: improving clinical relevance, adopting holistic multi-modal approaches, and
reducing invasiveness to enhance accessibility (Table 11). Addressing these gaps through innovative, non-invasive,
and individualized PoC solutions could empower individuals to better manage micronutrient malnutrition.
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Table 12. Alphabetized List of Abbreviations in Main Text

Abbreviation Definition Abbreviation Definition

AAS atomic absorption spectrometry LoD limit of detection

AGP acid glycoprotein MILCA mutual information least dependent component
analysis

AI artificial intelligence ML machine learning

ANN artificial neural network MS mass spectroscopy

ANS autonomic nervous system NADH nicotinamide adenine dinucleotide

AUC area under the curve NDNS National Diet and Nutrition Surveys

BAC blood alcohol content NFC near-field communication

BIA bio-electrical impedance analysis NFPE Nutrition-Focused Physical Exam

BMI body mass index NHANES National Health and Nutrition Examination Survey

BP blood pressure NIR near infrared

Bphen bathophenanthroline PBS phosphate buffered saline

BRI body roundness index PNS parasympathetic nervous system

CBC complete blood count PoC point of care

CoV coefficient of variance PPG photoplethysmogram

CRP C-reactive protein PR pulse rate

CUN-BAE Clinical University of Navarra body adiposity estimator PRV pulse rate variability

CVD cardiovascular disease PWV peak wavelength value

ECG electrocardiogram RBP retinol binding protein

EDA electrodermal activity RDA Recommended Dietary Allowance

EDR estimated daily requirement RF radio frequency

ELISA enzyme-linked immunosorbent assay RMSE root mean square error

GSH glutathione ROI region of interest

HF high-frequency SNS sympathetic nervous system

HMVA human milk vitamin A SPR surface plasmon resonance

HPLC high-performance liquid chromatography SSR spectral super-resolution

HPLC-IR HPLC with IR detection sTfR soluble transferrin receptor

HPLC-UV HPLC with UV detection SWV square wave voltammetry

HR heart rate TSH thyroid-stimulating hormone

HRV heart rate variability UL Upper Limit

ICA independent component analysis US United States

ICP-MS inductively coupled plasma mass spectrometry UV ultraviolet

IDA iron-deficiency anemia VAI visceral adiposity index

IR infrared WC waist circumference

LC liquid chromatography WHO World Health Organization

LED light emitting diode WhtR waist-to-height ratio

LF low-frequency
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Table 13. Characteristics of Micronutrients: Water-Soluble Vitamins. Information from [11, 18, 32, 127, 133]

Overview Interactions Impacting Status

Micronutri-
ent

Purpose Storage Risk of
Excess

High Risk
Populations

Micronutrients Diseases (decrease) Medications
(decrease)

Vitamin B1
(thiamin); 3
forms (TMP,
TTP, TPP)

Critical to energy
metabolism and
cell development,
functionality

Small amounts in liver Lack of
evidence

Older adults Absorption
decreased by
magnesium,
folate deficiency

Alcoholism, In-
flammatory bowel
diseases, Obesity
post bariatric
surgery, chronic
renal failure, critical
illness, HIV/AIDS,
diabetes

Furosemide,
Fluorouracil

Vitamin B2
(riboflavin);
2 coenzyme
derivatives
(FMN and
FAD)

Critical to energy
metabolism, cell
development and
functionality, and
metabolism of
fats, drugs, and
steroids (maintains
homocysteine
levels)

Small amounts in liver,
heart, kidneys

Lack of
evidence

Vegetarian
athletes, pregnant
and lactating
people and their
infants, people
who are vegan
and/or consume
little milk, people
with riboflavin
transporter
deficiency

Absorption
decreased by
copper, zinc,
iron, man-
ganese intake;
deficiency
associated with
those of folate,
pyridoxine,
niacin

Alcoholism, Chronic
intestinal failure

None

Vitamin B3
(niacin); 2
forms (NAD
and NADP)

Critical to energy
metabolism, NAD
is needed in
over 400 enzyme
reactions

Some excess in red
blood cells

Yes (in
supple-
menta-
tion)

Those with
undernutrition

Status decreased
by inadequate
riboflavin,
pyridoxine,
and/or iron
intakes

Hartnup disease,
carcinoid syndrome

Antidiabetes,
isoniazid and
pyrazinamide

Vitamin B5
(pantothenic
acid)

Critical to energy
metabolism,
breaking down and
making fats

Red blood cells and
tissues

Lack of
evidence

Those with a
pantothenate
kinase-associated
neurodegenera-
tion 2 mutation

Vitamin B6
(pyridoxine);
3 forms
(pyridoxine,
pyridoxal,
pyridoxam-
ine)

Involved in a wide
variety of enzyme
reactions, protein
metabolism,
and cognitive
development
(maintaining
homocysteine
levels)

Majority bounded to
Albumin

Yes (in
supple-
menta-
tion)

Those with
autoimmune
disorders

Poor status
associated
with low
concentrations
of other B-
complex
vitamins

Alcoholism, In-
flammatory bowel
diseases, chronic
renal failure, mal-
absorption (celiac,
Crohn’s, etc),
homocystinuria

HIV therapy/treat-
ment, therapies
inhibiting vitamin
activity, cycloser-
ine, antiepileptics,
theophyline

Vitamin B7
(biotin)

Critical to the
metabolism of
proteins, fats, and
carbohydrates into
energy

Most stored in liver None Those with
biotinidase
deficiency,
chronic alcohol
exposure, and
pregnant and
breastfeeding
people

Alcoholism, chronic
intestinal failure

Anticonvulsants

Vitamin B9
(folate)

Used to create
DNA and RNA,
facilitate cell
division, as well
as to metabolize
amino acids
(conversion of
homocysteine)

15-30 mg with 50% in
liver, rest in blood and
body tissues

Yes
(masks
B12 defi-
ciency)

Women of
childbearing
age, pregnancy,
MTHFR genetic
polymorphism

Absorption
decreased by
zinc deficiency,
bioavailability
increased by
Vitamin C,
excess can mask
B12 deficiency

Alcoholism, chronic
intestinal failure,
Chronic (atrophic)
gastritis, obesity
post bariatric
surgery, chronic
renal failure

Methotrexate,
antiepileptics,
sulfasalazine

Continued on next page
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Overview Interactions Impacting Status

Micronutri-
ent

Purpose Storage Risk of
Excess

High Risk
Populations

Micronutrients Diseases (decrease) Medications
(decrease)

Vitamin B12
(cobalamin)
[3]

Critical to CNS
development and
functionality,
RBC formulation,
DNA synthesis,
conversion of
homocysteine

80% in liver; 1-5 mg
(thousands times
more than daily
consumption); can last
2-5 years, 1-3 by some
sources

None Women, elderly,
black people,
those with low
socioeconomic
status, who have
had gastrointesti-
nal surgery, are
vegetarian/vegan

Absorption
decreased by
excess vitamin
C

Alcoholism, chronic
intestinal failure,
chronic (atrophic)
gastritis, Liver
diseases, obesity
post bariatric
surgery, critical
illness

Gastric acid in-
hibitors, metformin

Vitamin C
(ascorbic
acid)

Required in
synthesis of
collagen and
neurotransmitters,
used in protein
metabolism, and
critical to immune
function

High concentrations in
cells and tissues, WBC,
eyes, adrenal glands,
pituitary gland, and
brain; total content
300 mg (near acute
deficiency) to 2g

Yes (mild
nausea,
diarrhea,
cramps)

Smokers, those
with low food
variety, any
disease causing
oxidative stress

Shown to
regenerate other
antioxidants (ex
vitamin E)

Alcoholism, chronic
(atrophic) gastri-
tis, obesity post
bariatric surgery,
critical illness

Chemotherapy/ra-
diation, 3-hydroxy-
3-methylglutaryl
coenzyme A reduc-
tase inhibitors

Table 14. Characteristics of Micronutrients: Fat-Soluble Vitamins. Information from [11, 18, 32, 127, 133]

Overview Interactions Impacting Status

Micronutri-
ent

Purpose Storage Risk of
Excess

High Risk
Populations

Micronutrients Diseases (decrease) Medications
(decrease)

Vitamin A Critical for vision,
cell growth,
immune and
reproductive
functions

Most in liver (about 6
months), some in eyes

Yes Infants, preg-
nant people in
low/middle in-
come/developing
countries

Absorption
decreased by
zinc deficiency

Alcoholism, chronic
intestinal failure,
Inflammatory bowel
diseases, liver
diseases, obesity
post bariatric
surgery, cystic
fibrosis

Orlistat, retinoids
(results in toxicity)

Vitamin
D; 2 forms:
25(OH)D (cal-
cidiol) and
1,25(OH)D
(calcitriol)
[157]

Bone growth and
strength, absorp-
tion and control of
calcium, reducing
inflammation

Fatty tissue and liver Yes Breastfed infants,
adults 20-39,
those with
kidney/liver
dysfunction, with
dark skin, limited
sun exposure,
conditions
limiting fat
absorption

Magnesium
is critical to
activation
and binding,
function
is heavily
interwoven
with Calcium

Alcoholism, chronic
intestinal failure,
chronic (atrophic)
gastritis, Inflamma-
tory bowel diseases,
liver diseases, obe-
sity post bariatric
surgery, chronic
renal failure, critical
illness

Orlistat, statins,
steroids, thiazide
diuretics

Vitamin
E (alpha-
tocotrienol
form)

Function as an-
tioxidants, aid in
immune, cell sig-
naling, metabolic
processes

Liver (alpha-tocotrienol
form)

Lack of
evidence
(UL of
1000 mg
in adults)

Infants, those
with fat mal-
absorption,
dieting

Alcoholism, chronic
intestinal failure,
inflammatory bowel
diseases, liver
diseases, obesity
post bariatric
surgery

Anticoagulant,
antiplatlet, sim-
vastatin, niacin,
chemotherapy/ra-
dio treatment

Vitamin K Involved in blood
clotting and bone
metabolism

Low blood and tissue
stores, carried in
lipoproteins

None
(except
for K3)

Newborns and
those with fat
malabsorption

Excretion
stimulated by
excess Vitamin
D, absorption
decreased by
excess Vitamin
E and A

Alcoholism, chronic
intestinal failure,
inflammatory bowel
diseases, obesity
post bariatric
surgery, chronic
renal failure,
bleeding disorders

Antibiotics and
anticoagulants, bile
acid sequestrants,
orlistat
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Table 15. Characteristics of Micronutrients: Minerals. Information from [11, 18, 32, 127, 133]

Overview Interactions Impacting Status

Micronutri-
ent

Purpose Storage Risk of
Excess

High Risk
Populations

Micronutrients Diseases (decrease) Medications
(decrease)

Iron
[55, 58]

Essential to oxygen
transport through
hemoglobin, energy
metabolism, physical
growth, neurological
development, cell
functioning, and
hormone synthesis

60% in blood
hemoglobin, rest
as ferritin in liver,
spleen, bone
marrow, muscles

Yes (es-
pecially
those with
hemochro-
matosis and
elderly)

Infants, young
children, teen
females, pregnant
people (especially
if Mexican-
American or
Black), pre-
menopausal, in
food-insecure
households, have
increased men-
strual bleeding

Absorption
increased by
Vitamin C intake,
Absorption
decreased by
zinc, calcium,
manganese
intake and copper
deficiency

Chronic intestinal
failure, chronic
(atrophic) gastritis,
inflammatory bowel
diseases, obesity post
bariatric surgery,
critical illness, cancer,
heart failure

Levodopa,
levothyroxine,
proton pump
inhibitors

Copper Cofactor in energy
production, iron
absorption, neu-
ropeptide activation,
and synthesis of
connective tissue and
neurotransmitters

50-120mg total,
95% carried by
ceruloplasmin;
2-3 months in
skeleton and muscle;
tightly regulated,
only 1mg/d loss in
bile

Yes Pregnant people Absorption
decreased by high
zinc

Chronic intestinal
failure, obesity post
bariatric surgery,
chronic renal failure,
critical illness, celiac
disease, menkes disease

Zinc [143] Physical growth and
development, cellular
metabolism, and
immune functions

85% in skeletal mus-
cle and bone, 0.1%
in plasma where
70% of that is bound
to albumin; 1.5g
females, 2.5g males
total

Yes Children, teens,
exclusively
breastfed infants,
pregnant people,
vegetarian/vegan,
have eating
disorders,
malabsorption,
gastrointestinal
disorders

Absorption
decreased by high
calcium/iron

Alcoholism, chronic
intestinal failure,
inflammatory bowel
diseases, liver diseases,
obesity post bariatric
surgery, chronic renal
failure, critical illness,
sickle cell disease, HIV

Antibiotics,
penicillamine,
piuretics

Iodine Thyroid gland
function, protein
synthesis, metabolism
and enzyme activity

70-80% in thyroid
gland; 15-20 mg
total

Yes Infants, pregnant
people, use
uniodized salt,
are in regions
with iodine-
deficient soils

Absorption
decreased by
iron intake
and selenium
deficiency

Anti-thyroids,
angiotensin-
converting
enzyme
inhibitors,
potassium-
paring
diuretics

Selenium Reproduction,
thyroid hormone
metabolism, and DNA
synthesis through
selenoproteins; also
acts as antioxidant

28-46% in skeletal
muscle, most in
selenomethionine
form

Yes Kidney dialysis
patients, those
in selenium
deficient regions

Inflammatory bowel
diseases, liver diseases,
chronic renal failure,
critical illness, obesity

Cisplatin

Magnesium Regulates several
chemical reactions,
including blood
glucose and blood
pressure regulation,
DNA, RNA, and
protein synthesis,
proper muscle and
nerve functioning,
bone development,
and calcium and
potassium ion
transport

Approx 25g; 50-
60% in bone, <1%
in serum (tightly
controlled), rest in
soft tissue

Yes Elderly Absorption
increased by
Vitamin D

Alcoholism, gas-
trointestinal disease,
bariatric surgery, T2D

Bisphos-
phonates,
antibiotics,
diuretics,
proton pump
inhibitors

ACM Trans. Comput. Healthcare

 



52 • Balch, Cardei, Kranz, and Doryab

Table 16. Physiological Symptoms of Micronutrient Deficiencies: Water-Soluble Vitamins. Information from [18, 35, 37, 127,
133, 137, 152, 154]

Micronutri-
ent

Eye Nail Oral Disease Autonomic Misc Timeframe

Vitamin B1 Disability in eye
movement (ophthal-
moplegia)

Cardiomy-
opathies/
heart failure,
Sarcopenia

Correlated
with
fatigue

Stores de-
pleted within
20 days of
insufficient
intake

Vitamin B2 Conjunctiva inflam-
mation/grittiness
(angular blepharitis),
Redness/fissures
in eyelid corners
(Angular Palpebri-
tis), conjunctiva
redness/irritation,
swollen/sticky eyelid,
photophobia

Bilateral cracks/redness at
corners of lips/mouth (angu-
lar cheilosis), dry/swollen/ul-
cerated lips (cheilosis),
redness in lips and tongue,
swollen/inflamed/smooth
tongue (glossitis), Atrophied
papillae

Correlated
with
fatigue

Vitamin B3 Redness/fissures
in eyelid corners
(Angular Palpebri-
tis), conjunctiva
redness/irritation,
swollen/sticky eyelid

Bilateral cracks/redness at
corners of lips/mouth (angu-
lar cheilosis), dry/swollen/ul-
cerated lips (cheilosis),
redness in lips and tongue,
swollen/inflamed/smooth
tongue (glossitis), Atrophied
papillae, inflamed gums
(gingivitis)

Pellagra Correlated
with
fatigue

Biomarkers
indicate
insufficiency
far before
clinical
symptoms
appear

Vitamin B5 Sleep issues, fall
in diastolic bp
and lability of
systolic bp

Corre-
lated with
fatigue,
numb-
ness/burn-
ing in
extremities

Vitamin B6 Conjunctiva inflam-
mation/grittiness
(angular blepharitis),
conjuntiva pallor, Red-
ness/fissures in eyelid
corners (Angular
Palpebritis), conjunc-
tiva redness/irritation,
swollen/sticky eyelid

Excessive
thinness, ha-
palonychia

Bilateral cracks/redness at
corners of lips/mouth (an-
gular cheilosis), swollen/in-
flamed/smooth tongue
(glossitis), dry/swollen/ul-
cerated lips (cheilosis),
Atrophied papillae, redness in
lips and tongue

Anemia,
cardiomy-
opathies/heart
failure

Supplementa-
tion improves
blood pressure,
reported to help
regulate SNS

Correlated
with
fatigue

Borderline
and mild
status may
not present
symptoms
for months or
years; Radler
and Lister
[152] say
“deficiency
often occurs
within 2
months of
inadequacy”

Vitamin B7 Excessive dryness,
excessive thinness,
brittleness

Multiple
sclerosis

Correlated
with
fatigue

Vitamin B9 conjuntiva pallor Central ridges redness in lips and tongue,
swollen/inflamed/smooth
tongue (glossitis), in-
flamed gums (gingivitis),
dry/swollen/ulcerated
lips (cheilosis), Aphthous
Stomatitis (canker sores),
inflamed/burning mouth,
Atrophied papillae

Anemia,
diabetes
mellitus

Correlated
with
fatigue

Continued on next page
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Micronutri-
ent

Eye Nail Oral Disease Autonomic Misc Timeframe

Vitamin
B12 [3]

conjuntiva pallor Pallor, clubbing
(Koilonychia),
transverse white
lines (Muehrcke’s
lines), excessive
dryness, darkness
in nails, curved
nail ends, central
ridges, longitudi-
nal melanonychia

Bilateral cracks/redness at
corners of lips/mouth (an-
gular cheilosis), swollen/in-
flamed/smooth tongue
(glossitis), dry/swollen/ulcer-
ated lips (cheilosis), pallor,
Aphthous Stomatitis (canker
sores), inflamed/burning
mouth, Atrophied papillae,
redness in lips and tongue,
bleeding gums, tooth loss,
tooth cavities

Anemia,
Osteoporosis,
sarcopenia

Deficiency
lowers HRV
measurements,
levels negatively
correlated with
sleep duration,
levels positively
correlated with
sleep movement
and self-assessed
quality, night
sweats, oxidative
stress

Correlated
with
fatigue

Clinical
symptoms
can take years
(typically 2-5)
to appear
because of
storage levels,
glossitis
may present
initially

Vitamin C Splinter hemor-
rhage, excessive
thinness, ha-
palonychia

Intraoral mucosa and tongue
inflammation, inflamed gums
(gingivitis), thrush, tooth loss,
tooth cavities

Scurvy Supplementation
improves blood
pressure, helps
regulate SNS

Correlated
with
fatigue

Deficiency can
occur after
3-6 months
of poor
intake, signs
of scurvy
appear within
1 month of
<10mg/day
intake

Table 17. Physiological Symptoms of Micronutrient Deficiencies: Fat-Soluble Vitamins. Information from [18, 35, 37, 127,
133, 137, 152, 154]

Micronutri-
ent

Eye Nail Oral Disease Autonomic Misc Timeframe

Vitamin A Bitot’s spots,
yellowish lumps
around eyes
(xanthelasma),
cornea softening
(kerotomalcia),
night blindness

excessive
dryness,
excessive
thinness,
leukonychia,
hapalonychia

Obesity (beta-carotene),
measles

Depletion led to increased
norepinephrine and
epinephrine in heart and
spleen of rats

Heavily
associated
with antiox-
idants and
immune
processes;

Plasma retinol
lowers only
after storage
in liver and
eyes are nearly
depleted, then
Xerophthalmia
(progressive
eye dryness
leading to night
blindness)
develops after
that

Vitamin D
[157]

Beau’s lines,
longitudinal
melanonychia,
excessive
thinness,
hapalonychia

inflamed
gums
(gingivitis)

Cancer cachexia, car-
diomyopathies/heart
failure, Chronic obstruc-
tive pulmonary disease,
osteoporosis, sarcopenia,
critical to formation of
hypocalcemia, depression

Deficiency lowers HRV
measurements, calcidiol
deficiency lowers resting
sympathovagal balance,
calcitriol deficiency to
worse reactions to stress,
supplementation improves
blood pressure

Vitamin E Obesity

Vitamin K Osteoporosis Impaired
clotting and
bleeding
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Table 18. Physiological Symptoms of Micronutrient Deficiencies: Minerals. Information from [18, 35, 37, 127, 133, 137, 152,
154]

Micronu-
trient

Eye Nail Oral Disease Autonomic Misc Timeframe

Iron
[55, 58]

conjuntiva
pallor, Red-
ness/fissures
in eyelid cor-
ners (Angular
Palpebritis),
conjunctiva
redness/ir-
ritation,
swollen/sticky
eyelid, blue-
tinted sclera

Pallor, clubbing
(Koilonychia),
transverse white
lines (Muehrcke’s
lines), brittle-
ness, excessive
dryness, exces-
sive thinness,
darkness in nails,
curved nail ends,
central ridges,
Onycholysis,
onychorrhexis

Bilateral cracks/redness
at corners of lips/mouth
(angular cheilosis), pallor,
swollen/inflamed/smooth
tongue (glossitis), Atrophied
papillae, dry/swollen/ulcer-
ated lips (cheilosis), thrush,
inflamed/burning mouth,
redness in lips and tongue

Anemia,
cardiomy-
opathies/heart
failure, osteoporo-
sis

Disrupts optimal
function of
endocrine and
immune systems;
positively
correlated with
sleep quality
(disputed); IDA
affects temp
regulation and
HRV (HRV
disputed); low
levels associated
with higher HR

Status has rela-
tion to energy
levels and fatigue
according to
some sources;
critical to oxygen
binding; weak-
ness; impaired
cognitive func-
tion

Multiple
phases:
depletion of
stores (mild
deficiency, can
take several
months),
iron-deficiency
erythropoiesis
(erythrocyte
production),
then iron
deficiency
anemia (IDA)

Copper Conjuntiva
pallor

Anemia, chronic
obstructive
pulmonary
disease, fatty
liver disease,
osteoporosis

negatively
correlated with
sleep quality,
reported to help
regulate sns

Abnormal lipid
metabolism

Some weeks
to develop and
not readily
recognized,
Usually
manifests
in acute
conditions

Zinc [143] Conjunctiva
inflamma-
tion/grittinesss
(angular ble-
pharitis)

Beau’s lines,
onychorrhexis,
leukonychia,
brittleness

Changes in taste (inconsis-
tently observed), dryness
(Xerostomia), inflamed gums
(gingivitis)

Alcoholic
hepatitis, cancer
cachexia, chronic
obstructive
pulmonary
disease, obesity,
osteoporosis,
sarcopenia,
increased
pneumonia risk

Deficiency linked
to increased
blood pressure,
positively
correlated with
sleep quality,
reported to help
regulate SNS,
critical to ANS
functionality
according to
some sources

Light evidence
of relationship
between low
dietary zinc and
un-ideal meta-
bolic response,
correlated with
fatigue

Symptoms
after “several
months of low
levels”

Iodine clubbing
(Koilonychia)

Goiter, hypothy-
roidism

Critical to
metabolic
function

Hypothy-
roidism occurs
when intake
falls below
10-20 `g/d,
goiter appears
fairly quickly

Selenium excessive dryness,
excessive thin-
ness, pallor

Cardiomy-
opathies/ heart
failure, chronic
obstructive pul-
monary disease,
obesity

Intake reduces
hypertrophy and
oxidative stress,
negatively effects
blood pressure

Effects on
metabolism

Calcium Beau’s lines,
transverse
leukonychia, brit-
tleness, excessive
dryness, exces-
sive thinness,
onychomadesis,
onychorrhexis,
hapalonychia

Osteoporosis,
rickets, osteoma-
lacia, congestive
heart failure,
seizures

Hypocalcemia
can be asymp-
tomatic or have
a wide range
of symptoms;
most common
are numbness,
tingling, muscle
spasms

Continued on next page
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Micronu-
trient

Eye Nail Oral Disease Autonomic Misc Timeframe

Magne-
sium

Excessive dry-
ness, excessive
thinness, brittle-
ness

inflamed/burning mouth Cardiovascular
disease, hyperten-
sion, metabolic
syndrome, type
2 diabetes,
depression,
hypocalcemia,
hypokalemia,
seizures

Abnormal
heart rhythms
observed

Overt signs of
clinical deficiency
are not routinely
recognized;
correlated with
fatigue, nausea,
numbness,
tingling, muscle
spasms
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